

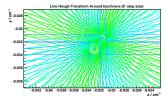
GPUs: Platform, Programming, Pitfalls

GridKa School 2016: Data Science on Modern Architectures

About, Outline

Andreas Herten

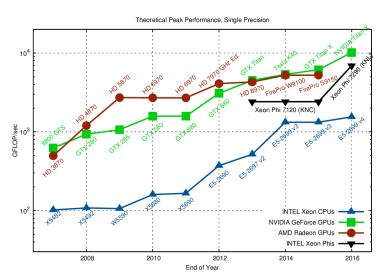
- Physics in
 - Aachen (Dipl. at CMS)
 - Jülich/Bochum (Dr. at PANDA)

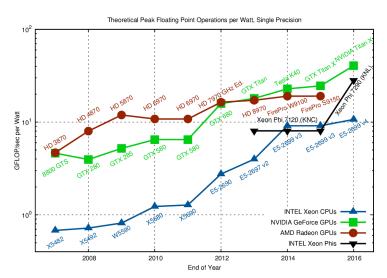


 Since then: NVIDIA Application Lab Optimizing scientific applications for/on GPUs

Motivation
Platform
Hardware
Features
Programming
Libraries
Directives
Languages
Tools
Pitfalls

- 1999: General computations with shaders of graphics hardware
- 2001: NVIDIA GeForce 3 with programmable shaders [1]; 2003: DirectX 9 at ATI
- 2016: Top 500: 1/10 with GPUs, Green 500: 70 % of top 50 with GPUs





Status Quo

GPU all around

But why?!

Let's find out!

Platform

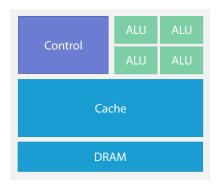
Transporting one

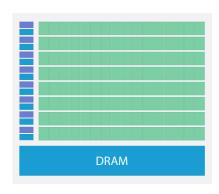
Transporting many

Graphics: Lee [3] and Shearings Holidays [4]

CPU vs. GPU

Chip





Aim: Hide Latency Everything else follows

SIMT

Asynchronicity

Memory

Aim: Hide Latency Everything else follows

SIMT

Asynchronicity

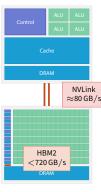
Memory

Memory

GPU memory ain't no CPU memory

- GPU: accelerator / extension card
- → Separate device from CPU Separate memory, but UVA and UM
 - Memory transfers need special consideration! Do as little as possible!
 - Formerly: Explicitly copy data to/from GPU Now: Done automatically (performance...?)
 - Values for P100: 16 GB RAM, 720 GB/s

Host



Device

Aim: Hide Latency Everything else follows

SIMT

Asynchronicity

Memory

Async

Following different streams

- Problem: Memory transfer is comparably slow
 Solution: Do something else in meantime (computation)!
- → Overlap tasks
 - Copy and compute engines run separately (streams)
 - GPU needs to be fed: Schedule many computations
- CPU can do other work while GPU computes; synchronization

Aim: Hide Latency Everything else follows

SIMT

Asynchronicity

Memory

Of threads and warps

Vector

SMT

SIMT

CPU:

- Single Instruction, Multiple Data (SIMD)
- Simultaneous Multithreading (SMT)
- GPU: Single Instruction, Multiple Threads (SIMT)
 - CPU core ≈ GPU multiprocessor (SM)
 - Working unit: set of threads (32, a warp)
 - Fast switching of threads (large register file)
 - Branching if _______

SIMT

Of threads and warps

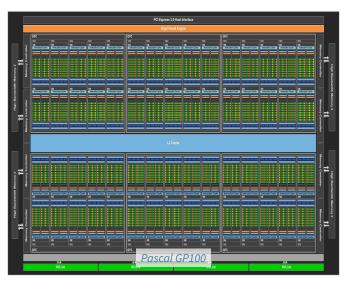
Vector

SMT

Thread Core Thread	Core
Core	Core

SIMT

|--|



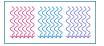
SIMT

Of threads and warps

Vector

SMT

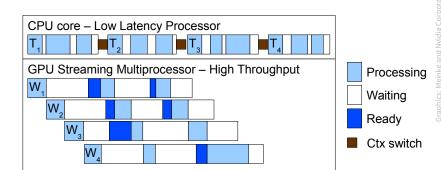
SIMT



the Helmholtz Association

Latency Hiding GPU's ultimate feature

- CPU minimizes latency within each thread
 - GPU hides latency with computations from other thread groups



CPU vs. GPU

Low latency vs. high throughput

Optimized for low latency

- Large main memory
- Fast clock rate
- Large caches
- **Branch** prediction
- Powerful ALU
- Relatively low memory bandwidth
- Cache misses costly
- Low performance per watt

Optimized for high throughput

- + High bandwidth main memory
- + Latency tolerant (parallelism)
- + More compute resources
- + High performance per watt
- Limited memory capacity
- Low per-thread performance
- Extension card

Programming

Preface: CPU

A simple CPU program!

SAXPY: $\vec{y} = a\vec{x} + \vec{y}$, with single precision Part of LAPACK BLAS Level 1

```
void saxpy(int n, float a, float * x, float * y) {
  for (int i = 0; i < n; i++)
    y[i] = a * x[i] + y[i];
}
int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
saxpy(n, a, x, y);</pre>
```

Libraries

The truth is out there!

Programming GPUs is easy: Just don't!

Use applications & libraries!

The truth is out there!

Programming GPUs is easy: Just don't!

Use applications & libraries!

CUDA Math

theano

JÜLICH

Parallel algebra

- GPU-parallel BLAS (all 152 routines)
- Single, double, complex data types
- Constant competition with Intel's MKL
- Multi-GPU support
- → https://developer.nvidia.com/cublas http://docs.nvidia.com/cuda/cublas

cuBLAS

Code example

```
int a = 42;
int n = 10;
float x[n], y[n];
// fill x, v
cublasInit();
float * d x, * d y;
cudaMalloc((void **)\deltad x, n * sizeof(x[0]);
cudaMalloc((void **)&d y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d y, 1);
cublasSaxpy(n, a, d x, 1, d y, 1);
cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
```


Programming GPUs is easy: Just don't!

Use applications & libraries!

Numba

theano

cuRAND

CUDA Math

Thrust

Iterators! Iterators everywhere!

- $\frac{\mathsf{Thrust}}{\mathsf{CUDA}} = \frac{\mathsf{STL}}{\mathsf{C++}}$
- Template library
- Based on iterators
- Data parallel primitives (scan(), sort(), reduce(),...)
- Fully compatible with plain CUDA C (comes with CUDA Toolkit)
- → http://thrust.github.io/ http://docs.nvidia.com/cuda/thrust/


```
int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y
thrust::device vector d x = x, d y = y;
using namespace thrust::placeholders;
thrust::transform(d x.begin(), d x.end(), d y.begin(),
\rightarrow d y.begin(), a * 1 + 2);
x = d x;
```


Programming Directives

GPU Programming with Directives

Keepin' you portable

Annotate usual source code by directives

```
#pragma acc loop
for (int i = 0; i < 1; i+*) {};</pre>
```

- Also: Generalized functions acc_copy();
- Compiler interprets directives, creates according instructions

Pro

- Portability
 - Other compiler? No problem!
 To it, it's a serial program
 - Different target architectures from same code
- Easy to program

Con

- Only few compilers
- Not all the raw power available
- Harder to debug
- Easy to program wrong

mber of the Helmholtz Association

GPU Programming with Directives

The power of... two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5

```
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for ( ) {
    #pragma omp parallel for
    for ( ) {
        // ...
    }
}
```

OpenACC Similar to OpenMP, but more specifically for GPUs


```
void saxpy acc(int n, float a, float * x, float * y) {
  #pragma acc kernels
  for (int i = 0; i < n; i++)
   y[i] = a * x[i] + y[i];
int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
saxpy_acc(n, a, x, y);
```



```
void saxpy acc(int n, float a, float * x, float * y) {
  \#pragma acc parallel loop copy(y) copyin(x)
  for (int i = 0; i < n; i++)
   v[i] = a * x[i] + v[i]:
int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
saxpy_acc(n, a, x, y);
```


Programming Languages

Programming GPU Directly

Two solutions:

Finally...

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, ...) 2009

- Platform: Programming language (OpenCL C/C++), API, and compiler
- Targets CPUs, GPUs, FPGAs, and other many-core machines
- Fully open source
- Different compilers available

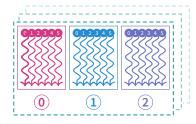
CUDA NVIDIA's GPU platform 2007

- Platform: Drivers, programming language (CUDA C/C++),
 API, compiler, debuggers, profilers, ...
- Only NVIDIA GPUs
- Compilation with nvcc GCC/LLVM solutions on way (slowly)
- Also: CUDA Fortran
- Choose what flavor you like, what colleagues/collaboration is using
- Hardest: Come up with parallelized algorithm

CUDA C/C++

Warp the kernel, it's a thread.

- Methods to exploit parallelism:
 - Threads → Block
 - Blocks → Grid
 - All in 3D



- Execution unit: kernel
 - Function executing in parallel on device

```
__global__ kernel(int a, float * b) { }
```

- Access own ID by global variables threadIdx.x, blockIdx.y,...
- Execution order non-deterministic!
- Only threads in one warp (32 threads of block) can communicate reliably/quickly
- ⇒ SAXPY!

```
__global__ void saxpy cuda(int n, float a, float * x, float * y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n)
    y[i] = a * x[i] + y[i];
int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));
saxpy cuda<<<2, 5>>>(n, a, x, v);
cudaDeviceSynchronize();
```


Programming Tools

NVIDIA

- cuda-gdb GDB-like command line utility for debugging cuda-memcheck Like Valgrind's memcheck, for checking errors in memory accesses
 - Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio (Windows)
 - nvprof Command line profiler, including detailed performance counters
 - Visual Profiler Timeline profiling and annotated performance experiments
- OpenCL: CodeXL (Open Source, GPUOpen/AMD) debugging, profiling.

nvprof

Command that line

Usage: nvprof ./app

```
● ● PSlides — aherten@JUHYDRA: ~/cudaSamples/NVIDIA CUDA-7.5 Samples/bin/x86 64/linux/release — ..linux/release — .ssh juhydra
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
==27580== Profiling application: ./matrixMul
==27580== Profiling result:
Time(%)
            Time
                    Calls
                                         Min
                                                   Max Name
 99.82% 111.33ms
                      301 369.85us 363.97us 375.62us void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
  0.11% 124.58us
                        2 62.289us 43.393us 81.185us [CUDA memcpy HtoD]
  0.07% 80.736us
                        1 80.736us 80.736us 80.736us [CUDA memcpy DtoH]
==27580== APT calls:
Time(%)
            Time
                    Calls
                                Avq
 50.18% 348.27ms
                        3 116.09ms 241.59us 347.79ms cudaMalloc
 32.66% 226.68ms
                           226.68ms 226.68ms cudaDeviceReset
 15.47% 107.40ms
                           107.40ms 107.40ms 107.40ms cudaEventSynchronize
  0.52% 3.5853ms
                      301 11.911us 11.045us 34.486us cudaLaunch
  0.36% 2.4915ms
                      332 7.5040us
                                       196ns 277.14us cuDeviceGetAttribute
  0.24% 1.6478ms
                     4 411.96us 294.19us 539.73us cuDeviceTotalMem
  0.19% 1.3333ms
                           444.43us 181.15us 813.00us cudaMemcov
  0.12% 802.85us
                        3 267.62us 249.19us 299.41us cudaFree
  0.09% 604.10us
                           604.10us 604.10us 604.10us cudaGetDeviceProperties
  0.07% 451.30us
                     1505
                              299ns
                                       266ns 6.0860us cudaSetupArgument
  0.05% 362.32us
                      1 362.32us 362.32us 362.32us cudaDeviceSynchronize
  0.03% 242.14us
                       4 60.534us 56.884us 69.764us cuDeviceGetName
  0.02% 127.99us
                                        384ns 2.4580us cudaConfigureCall
  0.00% 10.920us
                       2 5.4600us 4.2100us 6.7100us cudaEventRecord
  0.00% 10.613us
                        1 10.613us 10.613us 10.613us cudaGetDevice
  0.00% 9.4980us
                        8 1.1870us
                                       246ns 4.2760us cuDeviceGet
  0.00% 5.7490us
                        2 2.8740us 1.1700us 4.5790us cudaEventCreate
  0.00% 5.4630us
                        1 5.4630us 5.4630us 5.4630us cudaEventElapsedTime
  0.00% 3.2900us
                        2 1.6450us 1.2160us 2.0740us cuDeviceGetCount
```

nvprof

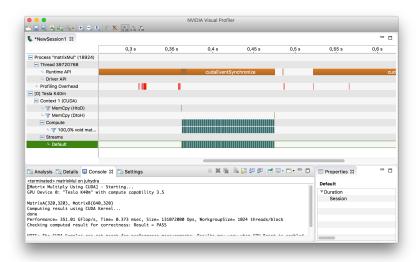
Command that line

With metrics: nvprof --metrics flop_sp_efficiency ./app



Visual Profiler

Your new favorite tool



Pitfalls

Pitfalls; Caveats; Tips

There are mistakes to be made, opportunities to be missed

- Try to use a library if possible; let others do the hard work
- Profile! Don't trust your gut!
- Gradually improve and specialize when porting and optimizing
- Expose enough parallelism! The GPU wants to be fed
- Express data locality
- Study your data transfers, can you reduce it?
- Unified Memory is a good start, but explicit transfers might be fast
- Use specialized memory: constant memory, shared memory! Pinned host memory is sometimes a very easy performance booster
- Overlap computation and transfer
- Does your code really need double precision? Is single precision sufficient? Or, maybe, even half precision?
- The number of threads and blocks is a tunable parameter; 128 is a good start

Omitted

There's so much more!

What I did not talk about

- Atomic operations
- Shared memory
- Pinned memory
- How debugging works
- Overlapping streams
- Cross-compilation for heterogeneous systems
- ...

- GPUs can improve your performance many-fold
- For a fitting, parallelizable application
- Libraries are easiest
- Direct programming (plain CUDA) is most powerful
- OpenACC is somewhere in between (and portable)
- There are many tools helping the programmer
- → Felice will surely give you more details in today's GPU tutorial!

Thank you for your attention! a.herten@fz-juelich.de

Appendix
Further Reading & Links
Pascal Performances
Glossary
References

lember of the Helmholtz Association

Further Reading & Links

More!

- A discussion of SIMD, SIMT, SMT by Y. Kreinin.
- NVIDIA's documentation: docs.nvidia.com
- NVIDIA's Parallel For All blog

Pascal Performance

Tesla Products	Tesla K40	Tesla M40	Tesla P100
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)
SMs	15	24	56
TPCs	15	24	28
FP32 CUDA Cores / SM	192	128	64
FP32 CUDA Cores / GPU	2880	3072	3584
FP64 CUDA Cores / SM	64	4	32
FP64 CUDA Cores / GPU	960	96	1792
Base Clock	745 MHz	948 MHz	1328 MHz
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz
Peak FP32 GFLOPs1	5040	6840	10600
Peak FP64 GFLOPs ¹	1680	210	5300
Texture Units	240	192	224
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB
Register File Size / SM	256 KB	256 KB	256 KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB
TDP	235 Watts	250 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion
GPU Die Size	551 mm²	601 mm²	610 mm²
Manufacturing Process	28-nm	28-nm	16-nm FinFET

Figure: Tesla P100 performance characteristics in comparison [5]

Glossary I

- API A programmatic interface to software by well-defined functions. Short for application programming interface. 37, 52
- ATI Canada-based GPUs manufacturing company; bought by AMD in 2006. 3, 52
- CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA C/C++. 29, 37–39, 48, 52, 53
 - GCC The GNU Compiler Collection, the collection of open source compilers, among other for C and Fortran. 37, 52

Glossary II

- LLVM An open Source compiler infrastructure, providing, among others, Clang for C. 37, 52
- NVIDIA US technology company creating GPUs. 2, 3, 37, 41, 50, 52
- OpenACC Directive-based programming, primarily for many-core machines. 33–35, 48, 52
 - OpenCL The *Open Computing Language*. Framework for writing code for heterogeneous architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 37, 41, 52
 - OpenMP Directive-based programming, primarily for multi-threaded machines. 33, 52

Glossary III

- SAXPY Single-precision $A \times X + Y$. A simple code example of scaling a vector and adding an offset. 23, 38, 39, 52
 - CPU Central Processing Unit. 9, 10, 13, 33, 37, 52, 53
 - GPU Graphics Processing Unit. 2, 9–14, 16, 24–26, 28, 32, 33, 37, 41, 46, 48, 52, 53
 - SIMD Single Instruction, Multiple Data. 17–19, 52
 - SIMT Single Instruction, Multiple Threads. 11, 12, 14, 16–19, 52
 - SM Streaming Multiprocessor. 17–19, 52
 - SMT Simultaneous Multithreading. 17-19, 52

References I

- [1] Chris McClanahan. "History and evolution of gpu architecture". In: A Survey Paper (2010). URL: http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf.
- [2] Karl Rupp. *Pictures: CPU/GPU Performance Comparison*. URL: https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/.
- [3] Mark Lee. Picture: kawasaki ninja. URL: https://www.flickr.com/photos/pochacco20/39030210/.
- [4] Shearings Holidays. *Picture: Shearings coach 636*. URL: https://www.flickr.com/photos/shearings/13583388025/.

References II

- [5] Nvidia Corporation. Pictures: Pascal Blockdiagram, Pascal Multiprocessor. Pascal Architecture Whitepaper. URL: https://images.nvidia.com/content/pdf/tesla/ whitepaper/pascal-architecture-whitepaper.pdf.
- [6] Jan Meinke and Nvidia Corporation. Diagram: Latency Hiding.
- [7] Wes Breazell. Picture: Wizard. URL: https://thenounproject.com/wes13/collection/its-a-wizards-world/.