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GPUs: Platform,
Programming, Pitfalls
GridKa School 2016: Data Science on Modern Architectures

Andreas Herten, Forschungszentrum Jülich, 1 September 2016
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Status Quo
GPU all around

1999: General computations with shaders of graphics hardware
2001: NVIDIA GeForce 3 with programmable shaders [1]; 2003:
DirectX 9 at ATI
2016: Top 500: 1/10with GPUs, Green 500: 70% of top 50 with
GPUs
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Status Quo
GPU all around

But why?!
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Status Quo
GPU all around

But why?!

Let’s find out!
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CPU vs. GPU
Amatter of specialties

Transporting one
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)
Values for P100: 16 GB RAM, 720 GB/s
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 9 37
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SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)

— Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if
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A3

B0

B1

B2

B3

+

+

+

+
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Scalar
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Latency Hiding
GPU’s ultimate feature

CPUminimizes latency within each thread
GPU hides latency with computations from other thread groups

April 27, 2016 Slide 28

 CPU architecture must minimize latency within each 
thread

 GPU architecture hides latency with computation from 
other thread warps (bundle of threads)

Low Latency or High Throughput?

T
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T
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T
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T
4

CPU core – Low Latency Processor
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W
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W
4

GPU Streaming Multiprocessor – High Throughput Processing

Waiting

Ready

Ctx switch

© NVIDIA Corporation 2013
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CPU vs. GPU
Low latency vs. high throughput

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory

bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main

memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 13 37
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Programming
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Preface: CPU
A simple CPU program!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 15 37
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Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano
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cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 17 37
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cuBLAS
Code example

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

cublasInit();

float * d_x, * d_y;
cudaMalloc((void **)&d_x, n * sizeof(x[0]);
cudaMalloc((void **)&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);
cublasShutdown();
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Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 19 37



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 19 37



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators
Data parallel primitives (scan(), sort(), reduce(), … )
Fully compatible with plain CUDA C (comes with CUDA Toolkit)

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/
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Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(),

d_y.begin(), a * _1 + _2);↪→

x = d_x;
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Programming
Directives
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GPU Programming with Directives
Keepin’ you portable

Annotate usual source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability
— Other compiler? No problem!

To it, it’s a serial program
— Different target architectures

from same code
Easy to program

Con
Only few compilers
Not all the raw power
available
Harder to debug
Easy to programwrong

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 23 37
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GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since
4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for ( ) {

#pragma omp parallel for
for ( ) {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)

y[i] = a * x[i] + y[i];
}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)

y[i] = a * x[i] + y[i];
}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);
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Programming
Languages
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Programming GPU Directly
Finally…

Two solutions:

OpenCL Open Computing Language by Khronos Group (Apple, IBM,
NVIDIA, …) 2009
— Platform: Programming language (OpenCL C/C++), API, and

compiler
— Targets CPUs, GPUs, FPGAs, and other many-core machines
— Fully open source
— Different compilers available

CUDA NVIDIA’s GPU platform 2007
— Platform: Drivers, programming language (CUDA C/C++), API,

compiler, debuggers, profilers, …
— Only NVIDIA GPUs
— Compilation with nvcc

GCC/LLVM solutions on way (slowly)
— Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 27 37
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CUDA C/C++
Warp the kernel, it’s a thread.

Methods to exploit parallelism:

— Thread

s→ Block

— Block

s→ Grid

— All in 3D

Execution unit: kernel
— Function executing in parallel on device

__global__ kernel(int a, float * b) { }
— Access own ID by global variables threadIdx.x, blockIdx.y, …
— Execution order non-deterministic!
— Only threads in one warp (32 threads of block) can communicate

reliably/quickly

⇒ SAXPY!

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 28 37
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CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 29 37
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Programming
Tools
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GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in
memory accesses

Nsight IDE for GPU developing, based on Eclipse (Linux,
OS X) or Visual Studio (Windows)

nvprof Command line profiler, including detailed
performance counters

Visual Profiler Timeline profiling and annotated performance
experiments

OpenCL: CodeXL (Open Source, GPUOpen/AMD) – debugging,
profiling.

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 31 37
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nvprof
Command that line

Usage: nvprof ./app

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 32 37
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nvprof
Command that line

With metrics: nvprof --metrics flop_sp_efficiency ./app
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Visual Profiler
Your new favorite tool
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Pitfalls
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Pitfalls; Caveats; Tips
There are mistakes to bemade, opportunities to bemissed

Try to use a library if possible; let others do the hard work
Profile! Don’t trust your gut!
Gradually improve and specialize when porting and optimizing
Expose enough parallelism! The GPUwants to be fed
Express data locality
Study your data transfers, can you reduce it?
Unified Memory is a good start, but explicit transfers might be fast
Use specialized memory: constant memory, sharedmemory! Pinned
host memory is sometimes a very easy performance booster
Overlap computation and transfer
Does your code really need double precision? Is single precision
sufficient? Or, maybe, even half precision?
The number of threads and blocks is a tunable parameter; 128 is a good
start
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Omitted
There’s so muchmore!

What I did not talk about
Atomic operations
Sharedmemory
Pinnedmemory
How debugging works
Overlapping streams
Cross-compilation for heterogeneous systems
…
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Summary & Conclusion

GPUs can improve your performancemany-fold
For a fitting, parallelizable application
Libraries are easiest
Direct programming (plain CUDA) is most powerful
OpenACC is somewhere in between (and portable)
There are many tools helping the programmer

→ Felice will surely give youmore
details in today’s GPU tutorial!
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Summary & Conclusion

GPUs can improve your performancemany-fold
For a fitting, parallelizable application
Libraries are easiest
Direct programming (plain CUDA) is most powerful
OpenACC is somewhere in between (and portable)
There are many tools helping the programmer

→ Felice will surely give youmore
details in today’s GPU tutorial!

Thank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix
Further Reading & Links
Pascal Performances
Glossary
References

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 1 6



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Reading & Links
More!

A discussion of SIMD, SIMT, SMT by Y. Kreinin.
NVIDIA’s documentation: docs.nvidia.com
NVIDIA’s Parallel For All blog

Andreas Herten | GPUs: Platform, Programming, Pitfalls | 1 September 2016 # 2 6
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Pascal Performance

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth 

 

NVIDIA Tesla P100 WP-08019-001_v01.1  |  11 

Exceptional Performance and Power Efficiency 
Delivering higher performance and improving energy efficiency are two key goals for new GPU 
architectures. A number of changes to the SM in the Maxwell architecture improved its efficiency 
compared to Kepler. Pascal has built on this and incorporates additional improvements that allow us to 
increase performance per watt even further over Maxwell. While TSMC’s 16-nm FinFET manufacturing 
process plays an important role, many GPU architectural modifications were also implemented to further 
reduce power consumption while maintaining high performance.  

Table 1. Tesla P100 Compared to Prior Generation Tesla products 

Tesla Products Tesla K40 Tesla M40 Tesla P100 
GPU  GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal) 

SMs 15 24 56 

TPCs 15 24 28 

FP32 CUDA Cores / SM 192 128 64 

FP32 CUDA Cores / GPU 2880 3072 3584 

FP64 CUDA Cores / SM 64 4 32 

FP64 CUDA Cores / GPU 960 96 1792 

Base Clock 745 MHz 948 MHz 1328 MHz 

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 

Peak FP32 GFLOPs1 5040 6840 10600 

Peak FP64 GFLOPs1 1680 210 5300 

Texture Units 240 192 224 

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 

Memory Size Up to 12 GB Up to 24 GB 16 GB 

L2 Cache Size 1536 KB 3072 KB 4096 KB 

Register File Size / SM 256 KB 256 KB 256 KB 

Register File Size / GPU 3840 KB 6144 KB 14336 KB 

TDP 235 Watts 250 Watts 300 Watts 

Transistors 7.1 billion 8 billion 15.3 billion 

GPU Die Size 551 mm² 601 mm² 610 mm² 

Manufacturing Process 28-nm 28-nm 16-nm FinFET 
1  The GFLOPS in this chart are based on GPU Boost Clocks. 

Figure: Tesla P100 performance characteristics in comparison [5]
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Glossary I
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