
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters and
Tools
OpenPOWER Tutorial, SC16, Salt Lake City

Andreas Herten, Forschungszentrum Jülich, 14 November 2016

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Forschungszentrum Jülich

One of Europe’s largest research facilities
Energy, environmental sciences,
health, information technology
Home to
— ≈6000 employees
— Two Top 500 supercomputers (#13, #57)
— POWER Acceleration and Design Centre

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 2 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

About, Outline

Goals of this session
Get to know Performance
Counters
Use counters on POWER8

Use counters on NVIDIA GPUs
→ Hands-on

Motivation
Performance Counters

Introduction
General Description

Counters on POWER8
Measuring Counters

perf
PAPI
Score-P

Performance Counters on GPUs
NVIDIA GPU Introduction
GPU Counters
Measuring

Conclusion

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 3 36

Knuth

[…] premature optimization is
the root of all evil.
– Donald Knuth

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 1: Discovery

Problem: Suspect application is running slow!

Many reasons for slowness:
— Problem size
— Inherently algorithmic
— Limiting hardware resources (CPU, memory, …)
— Non-optimal implementation
— Omitting hardware features

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 5 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 1: Discovery

Problem: Suspect application is running slow!
Solution: Analyze it, optimize it!

Many reasons for slowness:
✗ Problem size
✗ Inherently algorithmic
? Limiting hardware resources (CPU, memory, …)
? Non-optimal implementation
? Omitting hardware features

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 5 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 1: Discovery

Problem: Suspect application is running slow!
Solution: Analyze it, optimize it!

Many reasons for slowness:
✗ Problem size
✗ Inherently algorithmic
? Limiting hardware resources (CPU, memory, …)
? Non-optimal implementation
? Omitting hardware features

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 5 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 2: Pause

Optimization after programming
— Purpose dictates usability
— Two distinct steps:

1 Functionality
2 Efficiency

More Knuth: Programmers waste enormous amounts of time […]
worrying about […] the speed of noncritical parts of their
programs […]. […] premature optimization is the root of all evil.

Yet we should not pass up our [optimization] opportunities […].
Don’t trust your gut; profile!
Optimize the right parts!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 6 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 2: Pause

Optimization after programming
— Purpose dictates usability
— Two distinct steps:

1 Functionality
2 Efficiency

More Knuth: Programmers waste enormous amounts of time […]
worrying about […] the speed of noncritical parts of their
programs […]. […] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […].

Don’t trust your gut; profile!
Optimize the right parts!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 6 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 2: Pause

Optimization after programming
— Purpose dictates usability
— Two distinct steps:

1 Functionality
2 Efficiency

More Knuth: Programmers waste enormous amounts of time […]
worrying about […] the speed of noncritical parts of their
programs […]. […] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […].
Don’t trust your gut; profile!
Optimize the right parts!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 6 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 3: Investigation

Investigation objectives
Where does code spend time?
What are performance limiters?
— Computing-limited
— Bandwidth-limited

Architecture features exploited?
— L1$, L2$

Caching

— (S)MT

Threading, Hyperthreading

— SIMD

Vectorization

— …

How does performance change with versions of code?
Impact of compiler options?

Next session

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 7 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 3: Investigation

Investigation objectives
Where does code spend time?
What are performance limiters?
— Computing-limited
— Bandwidth-limited

Architecture features exploited?
— L1$, L2$ Caching
— (S)MT Threading, Hyperthreading
— SIMD Vectorization
— …

How does performance change with versions of code?
Impact of compiler options?

Next session

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 7 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 3: Investigation

Investigation objectives
Where does code spend time?
What are performance limiters?
— Computing-limited
— Bandwidth-limited

Architecture features exploited?
— L1$, L2$ Caching
— (S)MT Threading, Hyperthreading
— SIMD Vectorization
— …

How does performance change with versions of code?
Impact of compiler options? Next session

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 7 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Motivation
Stage 3: Investigation

Investigation objectives
Where does code spend time?
What are performance limiters?
— Computing-limited
— Bandwidth-limited

Architecture features exploited?
— L1$, L2$ Caching
— (S)MT Threading, Hyperthreading
— SIMD Vectorization
— …

How does performance change with versions of code?
Impact of compiler options? Next session

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 7 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring
Like a pro!

Two ways to evaluate a program’s performance
1 The coarse way™

clock() or gettimeofday() or the likes
— Might make sense for first look
— No insight to inner workings

2 The informative way™
→ Performance counters!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 8 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 9 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Monitoring Unit
Right next to the core

Part of processor periphery, but dedicated registers
History
— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [5]
— Originally for chip developers
— Later embraced for software developers and tuners

Operation: Certain events counted at logic level, then aggregated
to registers

Pros

Low overhead
Very specific requests possible;
detailed information
Information about CPU core,
nest, cache, memory

Cons

Processor-specific
— No standard interface
— Somemight become unavailable…

Limited amount of counter registers
Compressed information content

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 10 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Monitoring Unit
Right next to the core

Part of processor periphery, but dedicated registers
History
— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [5]
— Originally for chip developers
— Later embraced for software developers and tuners

Operation: Certain events counted at logic level, then aggregated
to registers

Pros

Low overhead
Very specific requests possible;
detailed information
Information about CPU core,
nest, cache, memory

Cons

Processor-specific
— No standard interface
— Somemight become unavailable…

Limited amount of counter registers
Compressed information content

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 10 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Working with Performance Counters
Some caveats

Mind the clock rates!
— Modern processors have dynamic clock rates (CPUs, GPUs)

→Might skew results
— Some counters might not run at nominal clock rate

Limited counter registers
POWER8: 6 slots for hardware counters
Cores, Threads (OpenMP)
— Absolutely possible
— Complicates things slightly
— Pinning necessary

→ OMP_PROC_BIND, OMP_PLACES; PAPI_thread_init()

Nodes (MPI): Counters independent ofMPI, but aggregation tool
useful (Score-P, …)

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 11 36

http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=303
http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=304
https://icl.cs.utk.edu/projects/papi/wiki/Threads

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters Examples
What’s possible

Number of…
Instructions
Cycles
Floating point operations
Stalled cycles
Cachemisses, cache hits
Prefetches
Flushs
Branches
CPUmigrations

CPI, IPC

Native
Derived
Software

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 12 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters Examples
What’s possible

Number of…
Instructions
Cycles
Floating point operations
Stalled cycles
Cachemisses, cache hits
Prefetches
Flushs
Branches
CPUmigrations

CPI, IPC

Native
Derived
Software

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 12 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters on
POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 13 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …

Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect
fabric, memory
channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …

Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect
fabric, memory
channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …

Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect
fabric, memory
channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …

Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect
fabric, memory
channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …

Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect
fabric, memory
channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

NAME Some description
PM_INST_CMPL Instructions completed

Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

Number of counters for POWER8:

1144

See appendix for more on counters
(CPI stack; resources)

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 15 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring Counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 16 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Overview

perf Linux’ tool
PAPI C/C++ API

Score-P Measurement environment
Likwid Set of command line utilities for detailed analysis

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 17 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Command line utility as prefix for targeted application

Main program perf; all functionality by sub-commands
perf list List available counters
perf stat Run program; report performance data

perf record Run program; sample and save performance data
perf report Analyzed saved performance data (appendix)

perf top Like top, live-view of counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 18 36

https://lwn.net/Articles/339361/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Command line utility as prefix for targeted application
Main program perf; all functionality by sub-commands

perf list List available counters
perf stat Run program; report performance data

perf record Run program; sample and save performance data
perf report Analyzed saved performance data (appendix)

perf top Like top, live-view of counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 18 36

https://lwn.net/Articles/339361/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
perf stat

Usage: perf stat ./app

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 19 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
perf stat

Example: perf stat -e context-switches,[…] ./app

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 19 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
perf stat

Example: perf stat -e context-switches,[…] ./app

Count only
following events

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 19 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Tipps, Tricks

Option --repeat for statistical measurements
1.239 seconds time elapsed (+- 0.16%)

Measure unaliased, raw counters with -e rABC
perf stat -e r4d018 ./matmul.bin
551681 r4d018

Restrict counters to certain user-level modes by -e counter:m, with
m = u (user), = k (kernel), = h (hypervisor)
perfmodes: Per-thread (default), per-process (-p PID),
per-CPU (-a)
Other options
-d More details
-d -d More more details
-B Add thousands’ delimiters
-x Print machine-readable output

→ https://perf.wiki.kernel.org/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 20 36

https://perf.wiki.kernel.org/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran

Goal: Create common (and easy) interface to performance counters
Two API layers
— High-Level API: Most-commonly needed information capsuled by

convenient functions
— Low-Level API: Access all the counters! See appendix!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description
and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with
different counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 21 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers
— High-Level API: Most-commonly needed information capsuled by

convenient functions
— Low-Level API: Access all the counters! See appendix!

Command line utilities
papi_avail List aliased, common counters

Use papi_avail -e EVENT to get description
and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with
different counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 21 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers
— High-Level API: Most-commonly needed information capsuled by

convenient functions
— Low-Level API: Access all the counters! See appendix!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description
and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)

Comparison to perf: Instrument specific parts of code, with
different counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 21 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers
— High-Level API: Most-commonly needed information capsuled by

convenient functions
— Low-Level API: Access all the counters! See appendix!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description
and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with
different counters

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 21 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

Usage: papi_avail

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 22 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

Usage: papi_avail

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 22 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

Example (with details): papi_avail -e PAPI_L1_DCM

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 22 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

Example (native): papi_avail -e PM_CMPLU_STALL_VSU

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 22 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: High Level API
Usage: Source Code

// Setup
float realTime, procTime, mflops, ipc;
long long flpins, ins;

// Initial call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

// Compute
mult(m, n, p, A, B, C);

// Finalize call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

See appendix for Low Level API snippet!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 23 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point

operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! Bymacro (appendix)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 24 36

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point

operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)

All PAPI calls return status code; check for it! Bymacro (appendix)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 24 36

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point

operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! Bymacro (appendix)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 24 36

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point

operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI

Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! Bymacro (appendix)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 24 36

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Introduction

Measurement infrastructure for profiling, event tracing, online
analysis
Output format input for many analysis tools (Cube, Vampir,
Periscope, Scalasca, Tau)

CHAPTER 1. INTRODUCTION

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically written in Fortran, C, or C++
and implemented in a serial way or using a parallelization via an multi-process, thread-parallel, accelerator-based
paradigm, or a combination thereof), the Score-P system provides a number of components that interact with each
other and with external tools. A graphical overview of this structure is given in Fig. 1.2. We shall now briefly
introduce the elements of this structure; more details will be given in the later chapters of this document.

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Online
interface

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

Figure 1.2: Overview of the Score-P measurement system architecture and the tools interface.

In order to instrument an application, the user needs to recompile the application using the Score-P instrumentation
command, which is added as a prefix to the original compile and link command lines. It automatically detects the
programming paradigm by parsing the original build instructions and utilizes appropriate and configurable methods
of instrumentation. These are currently:

• compiler instrumentation,

• MPI and SHMEM library interposition,

• source code instrumentation via the TAU instrumenter,

• OpenMP source code instrumentation using Opari2.

• Pthread instrumentation via GNU ld library wrapping.

• CUDA instrumentation

While the first three of these methods are based on using tools provided externally, the Opari2 instrumenter for
OpenMP programs is a part of the Score-P infrastructure itself. It is an extension of the well known and frequently
used OpenMP Pragma And Region Instrumenter system (Opari) that has been successfully used in the
past in combination with tools like Scalasca, VampirTrace and ompP. The fundamental concept of such a system is a
source-to-source translation that automatically adds all necessary calls to a runtime measurement library allowing to

4

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 25 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Introduction

Measurement infrastructure for profiling, event tracing, online
analysis
Output format input for many analysis tools (Cube, Vampir,
Periscope, Scalasca, Tau)

CHAPTER 1. INTRODUCTION

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically written in Fortran, C, or C++
and implemented in a serial way or using a parallelization via an multi-process, thread-parallel, accelerator-based
paradigm, or a combination thereof), the Score-P system provides a number of components that interact with each
other and with external tools. A graphical overview of this structure is given in Fig. 1.2. We shall now briefly
introduce the elements of this structure; more details will be given in the later chapters of this document.

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Online
interface

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

Figure 1.2: Overview of the Score-P measurement system architecture and the tools interface.

In order to instrument an application, the user needs to recompile the application using the Score-P instrumentation
command, which is added as a prefix to the original compile and link command lines. It automatically detects the
programming paradigm by parsing the original build instructions and utilizes appropriate and configurable methods
of instrumentation. These are currently:

• compiler instrumentation,

• MPI and SHMEM library interposition,

• source code instrumentation via the TAU instrumenter,

• OpenMP source code instrumentation using Opari2.

• Pthread instrumentation via GNU ld library wrapping.

• CUDA instrumentation

While the first three of these methods are based on using tools provided externally, the Opari2 instrumenter for
OpenMP programs is a part of the Score-P infrastructure itself. It is an extension of the well known and frequently
used OpenMP Pragma And Region Instrumenter system (Opari) that has been successfully used in the
past in combination with tools like Scalasca, VampirTrace and ompP. The fundamental concept of such a system is a
source-to-source translation that automatically adds all necessary calls to a runtime measurement library allowing to

4

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 25 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Howto

Prefix compiler executable by scorep
~\$ scorep clang++ -o app code.cpp

→ Adds instrumentation calls to binary
Profiling output is stored to file after run of binary
Steer with environment variables at run time
~\$ export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PM_CMPLU_STALL_VSU
~\$./app

⇒ Use different PAPI counters per run!

Quick visualization with Cube; scoring with scorep-score
appendix

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 26 36

http://www.scalasca.org/software/cube-4.x/cube.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Analysis with Cube

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 27 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters on GPUs

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 28 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

NVIDIA GPU Introduction
GPU 101

Dedicated devices, connected with CPU by bus (PCIe, NVLink)
Computations in Streaming Multiprocessor (SM)
Single Instruction, Multiple Threads (SIMT)
CUDA cores for single precision, for double precision, for…
Hierarchical, specialized memory

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

CPU GPU
Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 29 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Counters
Of events andmetrics

Counters built right in
Grouped into domains by topic
Access backend: CUPTI (CUDA Profiling Tools Interface)
Tools for instrumenting already-compiled code, for augmenting
source code, for tracing
NVIDIA differentiates between
Event Countable activity or occurrence on GPU device
Metric Characteristic calculated from one or more events

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 30 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Example Events and Metrics

NAME NVIDIA Description (quoted)

threads_launched Number of threads launched on amultiprocessor.
shared_store Number of executed store instructions where state space is

specified as shared, increments per warp on amultiprocessor.

ipc Instructions executed per cycle
achieved_occupancy Ratio of the average active warps per active cycle to the

maximum number of warps supported on amultiprocessor
l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores
gld_efficiency Ratio of requested global memory load throughput to required

global memory load throughput.
flop_count_dp Number of double-precision floating-point operations

executed non-predicated threads (add, multiply,
multiply-accumulate and special)

stall_pipe_busy Percentage of stalls occurring because a compute operation
cannot be performed because the compute pipeline is busy

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 31 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Example Events and Metrics

NAME NVIDIA Description (quoted)
threads_launched Number of threads launched on amultiprocessor.

shared_store Number of executed store instructions where state space is
specified as shared, increments per warp on amultiprocessor.

ipc Instructions executed per cycle
achieved_occupancy Ratio of the average active warps per active cycle to the

maximum number of warps supported on amultiprocessor
l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores
gld_efficiency Ratio of requested global memory load throughput to required

global memory load throughput.
flop_count_dp Number of double-precision floating-point operations

executed non-predicated threads (add, multiply,
multiply-accumulate and special)

stall_pipe_busy Percentage of stalls occurring because a compute operation
cannot be performed because the compute pipeline is busy

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 31 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Example Events and Metrics

NAME NVIDIA Description (quoted)
threads_launched Number of threads launched on amultiprocessor.

shared_store Number of executed store instructions where state space is
specified as shared, increments per warp on amultiprocessor.

ipc Instructions executed per cycle
achieved_occupancy Ratio of the average active warps per active cycle to the

maximum number of warps supported on amultiprocessor
l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores
gld_efficiency Ratio of requested global memory load throughput to required

global memory load throughput.
flop_count_dp Number of double-precision floating-point operations

executed non-predicated threads (add, multiply,
multiply-accumulate and special)

stall_pipe_busy Percentage of stalls occurring because a compute operation
cannot be performed because the compute pipeline is busy

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 31 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Rrace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools

PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched

Score-P Mature CUDA support
Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 32 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Rrace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools

PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched

Score-P Mature CUDA support
Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 32 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Rrace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools

PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched

Score-P Mature CUDA support
Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 32 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Rrace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools

PAPI All PAPI instrumentation through PAPI-C, e.g.
cuda:::device:0:threads_launched

Score-P Mature CUDA support
Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 32 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof
GPU command-line measurements

Usage: nvprof --events AB --metrics C,D ./app

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 33 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof
Useful hints

Useful parameters to nvprof
--query-metrics List all metrics
--query-events List all events
--kernels name Limit scope to kernel

--print-gpu-trace Print timeline of invocations
--aggregate-mode off No aggregation over all multiprocessors

(average)
--csv Output a CSV

--export-profile Store profiling information, e.g. for Visual
Profiler

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 34 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
An annotated time line view

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 35 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
Analysis experiments

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 35 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions
What we’ve learned

Large set of performance counters on POWER8 and NVIDIA
processors
Right next to (inside) core(s)
Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools
— perf
— PAPI
— Score-P
— nvprof

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 36 36

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions
What we’ve learned

Large set of performance counters on POWER8 and NVIDIA
processors
Right next to (inside) core(s)
Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools
— perf
— PAPI
— Score-P
— nvprof

Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 36 36

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Knuth on Optimization
References
POWER8 Performance Counters
perf Supplementary
PAPI Supplementary
Score-P Supplementary

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 1 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Knuth on Optimization
The full quote, finally

Programmers waste enormous amounts of time thinking
about, or worrying about, the speed of noncritical parts of their
programs, and these attempts at efficiency actually have a
strong negative impact when debugging andmaintenance are
considered.

We should forget about small efficiencies, say about 97 % of
the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3 %.

– Donald Knuth in “Structured Programming with Go to Statements” [6]

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 2 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References

[5] Terje Mathisen. Pentium Secrets. URL: http:
//www.gamedev.net/page/resources/_/technical/general-
programming/pentium-secrets-r213 (pages 17, 18).

[6] Donald E. Knuth. “Structured Programming with Go to
Statements”. In: ACM Comput. Surv. 6.4 (Dec. 1974),
pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640.
URL: http://doi.acm.org/10.1145/356635.356640 (page 80).

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 3 14

http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://dx.doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics

[1] Forschungszentrum Jülich. Hightechmade in 1960: A view into
the control room of DIDO. URL: http://historie.fz-
juelich.de/60jahre/DE/Geschichte/1956-
1960/Dekade/_node.html (page 2).

[2] Forschungszentrum Jülich. Forschungszentrum Bird’s Eye.
(Page 2).

[3] Forschungszentrum Jülich. JUQUEEN Supercomputer. URL:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/
Supercomputers/JUQUEEN/JUQUEEN_node.html (page 2).

[4] Rob984 via Wikimedia Commons. Europe orthographic
Caucasus Urals boundary (with borders). URL:
https://commons.wikimedia.org/wiki/File:
Europe_orthographic_Caucasus_Urals_boundary_(with_
borders).svg (page 2).

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 4 14

http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
https://commons.wikimedia.org/wiki/File:Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg
https://commons.wikimedia.org/wiki/File:Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg
https://commons.wikimedia.org/wiki/File:Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters

Further information on counters at IBMwebsite
— CPI events andmetrics for POWER8
— Events and groups supported on POWER8 architecture
— Derivedmetrics defined for POWER8 architecture
— Table 11-18 and Table D-1 of POWER8 Processor User’s Manual for

the Single-Chip Module
— OProfile: ppc64 POWER8 events
List available counters on system
— With PAPI: papi_native_avail
— With showevtinfo from libpfm’s /examples/ directory

./showevtinfo | \
grep -e "Name" -e "Desc" | sed "s/^.\+: //g" | paste -d'\t' - -

See next slide for CPI stack visualization
Most important counters for OpenMP:
DMISS_PM_CMPLU_STALL_DMISS_L3MISS,
PM_CMPLU_STALL_DMISS_REMOTE, PM_CMPLU_STALL_DMISS_DISTANT

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 5 14

http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_power8metrics.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetricspower8.htm
http://oprofile.sourceforge.net/docs/ppc64-power8-events.php
http://perfmon2.sourceforge.net/

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf Supplementary
More resources for the Linux tool

web.eece.maine.edu/~vweaver/projects/perf_events/

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 7 14

web.eece.maine.edu/~vweaver/projects/perf_events/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report

Usage: perf record ./app

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 8 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report

Usage: perf report

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 8 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report

Usage: perf report

Use c++filt
to demangle!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 8 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report

Usage: perf report

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 8 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: Low Level API
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);
// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");
// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection
PAPI_start(EventSet);
// Compute
mult(m, n, p, A, B, C);
// PAPI: End collection
PAPI_CALL(PAPI_stop(EventSet, values), PAPI_OK);

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 9 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: Low Level API
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);
// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");
// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection
PAPI_start(EventSet);
// Compute
mult(m, n, p, A, B, C);
// PAPI: End collection
PAPI_CALL(PAPI_stop(EventSet, values), PAPI_OK);

Macro for
checking results!

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 9 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Usage: Output

Example: ./matmul.low.bin (Matrix Multiplication)

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 10 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI Error Macro
For easier status code checking

#define PAPI_CALL(call, success) \
{ \

int err = call; \
if (success != err) \
std::cerr << "PAPI error for " << #call << " in L" <<
__LINE__ << " of " << __FILE__ << ": " <<
PAPI_strerror(err) << std::endl; \

↪→

↪→

}
// Second argument is code for GOOD,
// e.g. PAPI_OK or PAPI_VER_CURRENT or …
// …
// Call like:
PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 11 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

libpfm4
A helper Library

Helper library for setting up counters interfacing with perf kernel
environment
Used by PAPI to resolve counters
Handy as translation: Named counters→ raw counters
Use command line utility perf_examples/evt2raw to get raw
counter for perf
~\$./evt2raw PM_CMPLU_STALL_VSU
r2d012

→ http://perfmon2.sourceforge.net/docs_v4.html

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 12 14

http://perfmon2.sourceforge.net/docs_v4.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Principle analysis with scorep-score

Usage: scorep-score -r FILE

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 13 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Performance counter analysis with cube_dump

Usage: cube-dump -m METRIC FILE

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 13 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The End
Thanks for reading until here

Andreas Herten | OpenPOWER Performance Counters | 14 November 2016 # 14 14

	Motivation
	Performance Counters
	Introduction
	General Description

	Counters on POWER8
	Measuring Counters
	perf
	PAPI
	Score-P

	Performance Counters on GPUs
	NVIDIA GPU Introduction
	GPU Counters
	Measuring

	Conclusion
	Appendix
	Appendix
	Knuth on Optimization
	References
	POWER8 Performance Counters
	perf Supplementary
	PAPI Supplementary
	Score-P Supplementary

