
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Tutorial
GridKa School 2017: make science && run

Andreas Herten, Forschungszentrum Jülich, 31 August 2017

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Outline

The GPU Platform
Introduction
Threading Model
App Showcase
Parallel Models

OpenACC
History
OpenMP
Modus Operandi
OpenACC’s Models

OpenACC by Example
OpenACCWorkflow
Identify Parallelism
Parallelize Loops

parallel
loops
pgprof
Directive: Kernels

Data Transfers
GPUMemory Spaces
Portability
Clause: copy
Visual Profiler

Data Locality
Analyse Flow
Directive: data

Optimize
Levels of Parallelism
Clause: gang
Memory Coalescing
Pinned

Interoperability
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Conclusions
List of Tasks

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 2 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The GPU Platform

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 3 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[1
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
2]

Transporting many

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 4 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Amatter of specialties

Transporting one Gr
ap

hi
cs
:L
ee

[1
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
2]

Transporting many

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 4 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 5 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory

, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory

, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory
Old: Manual data transfer invocations – UVA
New: Driver automatically transfers data – UM

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Thread

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Block

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2
Threads: parallel execution units
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously

Parallel execution unit: kernel

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Preparations

Task 0⋆: Setup

Login to JURON
ssh -i mykey train0XX@juron.fz-juelich.de

Directory of tasks
cd $HOME/GPU/Tasks/Tasks/

Solutions are always given! You decide when to look.
Directory of solutions: $HOME/GPU/Tasks/Solutions/
Load required modules
module load pgi [cuda]

vim is available as editor (or copy files with scp or rsync)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 8 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

Task 0: Getting Started

Change to GPU/Tasks/Task0/ directory
Read Instructions.rst

TASK 0

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 9 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

Task 0: Getting Started

Change to GPU/Tasks/Task0/ directory
Read Instructions.rst

Dot Product GEMM

MandelbrotN-Body

TASK 0

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 9 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

103 104 105 106 107 108 109

Length of Vector

100

101

102

103

104
M

FL
O

P/
s

DDot Benchmark

CPU
GPU

Dot Product

2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

0

250

500

750

1000

1250

1500

1750

2000

GF
LO

P/
s

DGEMM Benchmark

CPU
GPU

GEMM

5000 10000 15000 20000 25000 30000
Width of Image

0

200

400

600

800

1000

M
Pi

xe
l/

s

Mandelbrot Benchmark

CPU
GPU

Mandelbrot

20000 40000 60000 80000 100000 120000
Number of Particles

0

2500

5000

7500

10000

12500

15000

17500

GF
LO

P/
s

N-Body Benchmark

1 GPU SP
2 GPUs SP
4 GPUs SP
1 GPU DP
2 GPUs DP
4 GPUs DP

N-Body

TASK 0

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 9 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 10 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 10 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 10 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 10 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling II
Gustafson-Barsis’s Law

[…] speedup should be measured by scaling the problem to the
number of processors, not fixing problem size.
– John Gustafson

256512 1024 2048 4096
Number of Processors

0

1000

2000

3000

4000

Sp
ee

du
p

Serial Portion: 1%
Serial Portion: 10%
Serial Portion: 50%
Serial Portion: 75%
Serial Portion: 90%
Serial Portion: 99%

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 11 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 12 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which
can ease the pain…

OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 13 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 14 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 14 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 14 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 14 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries Directives
Programming
LanguagesOpenACC

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 14 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC History

2011 OpenACC 1.0 specification is released
NVIDIA, Cray, PGI, CAPS

2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2016 OpenACC 2.6 proposed (deep copy, …)

→ https://www.openacc.org/
Also: Best practice guide

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 15 111

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_6_Proposed_Features_November2016.pdf
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP 4.0 now also has offloading feature

Fork/join model
Master thread launches parallel child threads; merge after execution

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 16 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP 4.0 now also has offloading feature

Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 16 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP 4.0 now also has offloading feature

Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 16 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Modus Operandi
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 17 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++

#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
High level programmingmodel for accelerators; heterogeneous
programs
OpenACC: Compiler directives, library routines, environment
variables
Portable across host systems and accelerator architectures

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 18 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

2 Compiler
Simple and abstracted

Compiler support
— PGI Best performance, great support, free
— GCC Beta, limited coverage, OSS
— Cray ???

Trust compiler to generate intended parallelism; check status
output!
No need to know ins’n’outs of accelerator; leave it to expert
compiler engineers
One code can target different accelerators: GPUs, or even
multi-core CPUs→ Portability

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 19 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine

⇒ Productivity
Because of generalness: Sometimes not last bit of hardware
performance accessible
But: Use OpenACC together with other accelerator-targeting
techniques (CUDA, libraries, …)

Expose
Parallelism

CompileMeasure

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 20 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Execution Model

Main program executes
on host
Device code is
transferred to
accelerator
Execution on
accelerator is started
Host waits until return
(except: async)

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 21 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Memory Model

Host
Memory

Device
MemoryDMA Transfers

Usually: Two separate memory spaces
Data needs to be transferred to device for computation; needs to
be transferred back for further evaluation
— Transfers hidden from programmer – caution: latency, bandwidth,

memory size
— Memories are not coherent
— Compiler helps; GPU runtime helps

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 22 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Programming Model
A binary perspective

OpenACC interpretation needs to be activated as compile flag
PGI pgcc -acc [-ta=tesla]
GCC gcc -fopenacc

Additional flags possible to improve/modify compilation
-ta=tesla:cc60 Use compute capability 6.0

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-fopenacc-dim=geom Use geom configuration for threads

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 23 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Programming Model
A source code perspective

Compiler directives, ignored by incapable compilers
Similar to OpenMP
Support for GPU, multicore CPU, other accelerators (Intel Xeon
Phi)
Syntax C/C++
#pragma acc directive [clause, [, clause] ...] newline
Syntax Fortran
!$acc directive [clause, [, clause] ...]
!$acc end directive

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 24 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 25 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC by Example

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 26 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 27 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −
1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 28 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 29 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 30 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Identify Parallelism
Generate Profile

TASK 1

Use pgprof to analyze unaccelerated version of Jacobi solver
Investigate!

Task 1: Analyze Application

Change to Task1/ directory
Compile: make task1
Usually, compile just with make (but this exercise is special)
Submit profiling run to the batch system:
make task1_profile
Study bsub call and pgprof call; try to understand

??? Where is hotspot? Which parts should be accelerated?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 31 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Identify Parallelism
Generate Profile

TASK 1

Use pgprof to analyze unaccelerated version of Jacobi solver
Investigate!

Task 1: Analyze Application

Change to Task1/ directory
Compile: make task1
Usually, compile just with make (but this exercise is special)
Submit profiling run to the batch system:
make task1_profile
Study bsub call and pgprof call; try to understand

??? Where is hotspot? Which parts should be accelerated?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 31 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Profile of Application
Info during compilation

$ pgcc -DUSE_DOUBLE -Minfo=all,intensity -fast -Minfo=ccff -Mprof=ccff
poisson2d_reference.o poisson2d.c -o poisson2d
poisson2d.c:
main:

68, Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

98, FMA (fused multiply-add) instruction(s) generated
105, Loop not vectorized: data dependency
123, Loop not fused: different loop trip count

Loop not vectorized: data dependency
Loop unrolled 8 times

Automated optimization of compiler, due to -fast
Vectorization, FMA, unrolling

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 32 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Profile of Application
Info during run

======== CPU profiling result (flat):
Time(%) Time Name
77.52% 999.99ms main (poisson2d.c:148 0x6d8)
9.30% 120ms main (0x704)
7.75% 99.999ms main (0x718)
0.78% 9.9999ms main (poisson2d.c:128 0x348)
0.78% 9.9999ms main (poisson2d.c:123 0x398)
0.78% 9.9999ms __xlmass_expd2 (0xffcc011c)
0.78% 9.9999ms __c_mcopy8 (0xffcc0054)
0.78% 9.9999ms __xlmass_expd2 (0xffcc0034)

======== Data collected at 100Hz frequency

78% in main()
Since everything is in main – limited helpfulness
Let’s look into main!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 33 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Code Independency Analysis
What is independent?

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 34 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Code Independency Analysis
What is independent?

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error,
fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));↪→

}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 34 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 35 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops: Parallel
Maybe the secondmost important directive

Programmer identifies block containing parallelism→ compiler
generates GPU code (kernel)
Program launch creates gangs of parallel threads on GPU
Implicit barrier at end of parallel region
Each gang executes same code sequentially

 OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 36 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region

private(var) A copy of variables var is made for each gang
firstprivate(var) Same as private, except varwill initialized

with value from host
if(cond) Parallel region will execute on accelerator only

if cond is true
reduction(op:var) Reduction is performed on variable varwith

operation op; supported: + * max min …
async[(int)] No implicit barrier at end of parallel region

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 37 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops: Loops
Maybe the third most important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

 OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 38 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied
if in parallel region (and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not

parallel)
tile(int[,int]) Split loops into loops over tiles of the full size

auto Compiler decides what to do

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 39 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops: Parallel Loops
Maybe the most important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

 OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 40 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop reduction(+:sum)
{
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernel 1

Kernel 2

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 41 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi
Add parallelism

TASK 2

Add OpenACC parallelism tomain loop in Jacobi
Profile code

→ Congratulations, you are a GPU developer!

Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make
Submit parallel run to the batch system: make run
Adapt the bsub call and run with other number of iterations,
matrix sizes
Profile: make profile
pgprof or nvprof is prefix to call to poisson2d

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 42 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi
Compilation result

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60,managed
poisson2d_reference.c -o poisson2d_reference.o

pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60,managed poisson2d.c
poisson2d_reference.o -o poisson2d

poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code

109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, Generating implicit copyin(A[:],rhs[:])
Generating implicit copyout(Anew[:])

112, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 43 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi
Run result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4444> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 60.0827 s, This: 9.5541 s, speedup: 6.29

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 44 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

pgprof / nvprof
NVIDIA’s command line profiler

Profiles applications, mainly for NVIDIA GPUs, but also CPU code
GPU: CUDA kernels, API calls, OpenACC
pgprof vs nvprof: Twins with other configurations
Generate concise performance reports, full timelines; measure
events andmetrics (hardware counters)

⇒ Powerful tool for GPU application analysis

→ http://docs.nvidia.com/cuda/profiler-users-guide/

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 45 111

http://docs.nvidia.com/cuda/profiler-users-guide/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Profile of Jacobi
With pgprof

$ make profile
==116606== PGPROF is profiling process 116606, command: ./poisson2d 10
==116606== Profiling application: ./poisson2d 10
Jacobi relaxation calculation: max 10 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.
2048x2048: Ref: 0.8378 s, This: 0.2716 s, speedup: 3.08
==116606== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.96% 129.82ms 10 12.982ms 11.204ms 20.086ms main_109_gpu
0.02% 30.560us 10 3.0560us 2.6240us 3.8720us main_109_gpu_red
0.01% 10.304us 10 1.0300us 960ns 1.2480us [CUDA memcpy HtoD]
0.00% 6.3680us 10 636ns 608ns 672ns [CUDA memcpy DtoH]

==116606== Unified Memory profiling result:
Device "Tesla P100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
3360 204.80KB 64.000KB 960.00KB 672.0000MB 25.37254ms Host To Device
3200 204.80KB 64.000KB 960.00KB 640.0000MB 30.94435ms Device To Host
2454 - - - - 66.99111ms GPU Page fault groups

Total CPU Page faults: 2304

==116606== API calls:
Time(%) Time Calls Avg Min Max Name
58.17% 639.81ms 5 127.96ms 564ns 189.20ms cuDevicePrimaryCtxRetain
26.35% 289.79ms 4 72.449ms 69.684ms 74.126ms cuDevicePrimaryCtxRelease

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 46 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Profile of Jacobi
With pgprof

$ make profile
==116606== PGPROF is profiling process 116606, command: ./poisson2d 10
==116606== Profiling application: ./poisson2d 10
Jacobi relaxation calculation: max 10 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.
2048x2048: Ref: 0.8378 s, This: 0.2716 s, speedup: 3.08
==116606== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.96% 129.82ms 10 12.982ms 11.204ms 20.086ms main_109_gpu
0.02% 30.560us 10 3.0560us 2.6240us 3.8720us main_109_gpu_red
0.01% 10.304us 10 1.0300us 960ns 1.2480us [CUDA memcpy HtoD]
0.00% 6.3680us 10 636ns 608ns 672ns [CUDA memcpy DtoH]

==116606== Unified Memory profiling result:
Device "Tesla P100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
3360 204.80KB 64.000KB 960.00KB 672.0000MB 25.37254ms Host To Device
3200 204.80KB 64.000KB 960.00KB 640.0000MB 30.94435ms Device To Host
2454 - - - - 66.99111ms GPU Page fault groups

Total CPU Page faults: 2304

==116606== API calls:
Time(%) Time Calls Avg Min Max Name
58.17% 639.81ms 5 127.96ms 564ns 189.20ms cuDevicePrimaryCtxRetain
26.35% 289.79ms 4 72.449ms 69.684ms 74.126ms cuDevicePrimaryCtxRelease

Only one function is parallelized!
Let’s do the rest!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 46 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...] newline
structured block

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 47 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 48 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

kernels vs. parallel

Both approaches equally valid; can perform equally well

kernels
— Compiler performs parallel analysis
— Can cover large area of code with single directive
— Gives compiler additional leeway
parallel
— Requires parallel analysis by programmer
— Will also parallelize what compiler maymiss
— Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 49 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

kernels vs. parallel

Both approaches equally valid; can perform equally well
kernels
— Compiler performs parallel analysis
— Can cover large area of code with single directive
— Gives compiler additional leeway
parallel
— Requires parallel analysis by programmer
— Will also parallelize what compiler maymiss
— Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 49 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

kernels vs. parallel

Both approaches equally valid; can perform equally well
kernels
— Compiler performs parallel analysis
— Can cover large area of code with single directive
— Gives compiler additional leeway
parallel
— Requires parallel analysis by programmer
— Will also parallelize what compiler maymiss
— Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 49 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi II
Addmore parallelism

TASK 3

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Do they perform equally well?

Task 3: More Parallel Loops

Change to Task3/ directory
Change source code
Compile: make
Study the compiler output!
Submit parallel run to the batch system: make run

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 50 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi II
Compilation result

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60,managed
poisson2d_reference.c -o poisson2d_reference.o

poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code

109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, ...
121, Accelerator kernel generated

Generating Tesla code
124, #pragma acc loop gang /* blockIdx.x */
126, #pragma acc loop vector(128) /* threadIdx.x */

121, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

126, Loop is parallelizable
133, Accelerator kernel genera...

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 51 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi II
Run result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4458> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc15>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 64.9401 s, This: 0.4099 s, speedup: 158.45

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 52 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi II
Run result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4458> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc15>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 64.9401 s, This: 0.4099 s, speedup: 158.45

Done?!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 52 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Parallel Jacobi

while (error > tol && iter < iter_max) {
error = 0.0;
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
#pragma acc parallel loop
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
#pragma acc parallel loop
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 53 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
Magic keyword: -ta=tesla:managed
Only feature of (recent) NVIDIA GPUs!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 54 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 55 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Virtual

Addressing

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 55 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 55 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once (Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 55 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Portability

Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region
(see -Minfo messages): Could not find allocated-variable index for
symbol (poisson2d.c: 110)
...
PGC/power Linux 17.4-0: compilation completed with severe errors

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 56 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Portability

Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region
(see -Minfo messages): Could not find allocated-variable index for
symbol (poisson2d.c: 110)
...
PGC/power Linux 17.4-0: compilation completed with severe errors

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 56 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Copy Statements

Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!

Now: Problem!
We need to give that information! (see also later)

 OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 57 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Copy Statements

Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!
Now: Problem!
We need to give that information! (see also later)

 OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 57 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Copies
Tell compiler which data is needed where

TASK 4

Add copy clauses to parallel regions
Profile with Visual Profiler

Task 4: Data Copies

Change to Task4/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run
It might take some time
Generate profile with make profile_tofile

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 58 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Copies
Compiler Output

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
main:

109, Generating copy(A[:ny*nx],Anew[:ny*nx],rhs[:ny*nx])
...

121, Generating copy(Anew[:ny*nx],A[:ny*nx])
...

131, Generating copy(A[:ny*nx])
Accelerator kernel generated
Generating Tesla code

132, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
137, Generating copy(A[:ny*nx])

Accelerator kernel generated
Generating Tesla code

138, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 59 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Copies
Run Result

$ make run
<<Starting on juronc13>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 114.7186 s, This: 25.0522 s, speedup: 4.58

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 60 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Copies
Run Result

$ make run
<<Starting on juronc13>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 114.7186 s, This: 25.0522 s, speedup: 4.58

Slower?!
Why?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 60 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGI/NVIDIA Visual Profiler

GUI tool accompanying pgprof / nvprof
PGI Start pgprofwithout parameters

NVIDIA Start nvvp
Timeline view of all things GPU
→ Study stages and interplay of application
Interactive or with input from command line profilers
View launch and run configurations
Guided and unguided analysis

→ https://developer.nvidia.com/nvidia-visual-profiler

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 61 111

https://developer.nvidia.com/nvidia-visual-profiler

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PGI/NVIDIA Visual Profiler

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 62 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacboi in Visual Profiler
Zoom in to kernel calls

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 63 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 64 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

copy

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
In code

while (error > tol && iter < iter_max) {
error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device

for (int ix = ix_start; ix <
ix_end; ix++) {↪→
for (int iy = iy_start; iy <

iy_end; iy++) {↪→
// ...

}}

A, Anew resident on device

copy

Copies are done
in each iteration!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 65 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
Summary

Meanwhile, whole algorithm is using GPU
At beginning of while loop, data copied to device; at end of loop,
coped by to host
Depending on type of parallel regions in while loop: Data copied
in between regions as well

Slow! Data copies are expensive!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 66 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Analyze Jacobi Data Flow
Summary

Meanwhile, whole algorithm is using GPU
At beginning of while loop, data copied to device; at end of loop,
coped by to host
Depending on type of parallel regions in while loop: Data copied
in between regions as well
Slow! Data copies are expensive!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 66 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Regions
Tomanually specify data locations

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

 OpenACC: data

#pragma acc data [clause, [, clause] ...] newline
{structured block}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 67 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Regions
Clauses

Clauses to augment the data regions

copy(var) Allocates memory of var on GPU, copies data to GPU
at beginning of region, copies data to host at end of
region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU
at beginning of region

copyout(var) Allocates memory of var on GPU, copies data to host
at end of region

create(var) Allocates memory of var on GPU
present(var) Data of var is not copies automatically to GPU but

considered present

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 68 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 69 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
One data set to rule them all

TASK 5

Add data region such that all data resides on device during
iterations
Optional: See your success in Visual Profiler

Task 5: Data Region

Change to Task5/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run
Generate profile with make profile_tofile

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 70 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating copyin(rhs[:ny*nx])
Generating create(Anew[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
113, #pragma acc loop seq
...

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 71 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
Run Result

$ make run
<<Starting on juronc12>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 115.0765 s, This: 0.4807 s, speedup: 239.38

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 72 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
Run Result

$ make run
<<Starting on juronc12>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 115.0765 s, This: 0.4807 s, speedup: 239.38

Wow!
But can we be even better?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 72 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 73 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 // Inner loop
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] +

A[iy*nx+ix-1] + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));↪→
117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 74 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Outer loop: Parallelism with gang and vector
Inner loop: Sequentially per thread (#pragma acc loop seq)
Inner loop was never parallelized!
Rule of thumb: Expose as much parallelism as possible

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 74 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Parallelism
3 Levels of Parallelism

Gang

$

Workers

Vector

Vector
Vector threads work in
lockstep (SIMD/SIMT
parallelism)

Worker
Has 1 or more vector;
workers share common
resource (cache)

Gang
Has 1 or more workers;
multiple gangs work
independently from each
other

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 75 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar
processors (CUDA cores)

Thread
Block Multiprocessor

Thread blocks: Executed on
multiprocessors (SM)
Do not migrate
Several concurrent thread blocks can
reside onmultiprocessor
Limit: Multiprocessor resources
(register file; sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread
blocks
Blocks, grids: Multiple dimensions

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 76 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar
processors (CUDA cores)

Thread
Block Multiprocessor

Thread blocks: Executed on
multiprocessors (SM)
Do not migrate
Several concurrent thread blocks can
reside onmultiprocessor
Limit: Multiprocessor resources
(register file; sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread
blocks
Blocks, grids: Multiple dimensions

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 76 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar
processors (CUDA cores)

Thread
Block Multiprocessor

Thread blocks: Executed on
multiprocessors (SM)
Do not migrate
Several concurrent thread blocks can
reside onmultiprocessor
Limit: Multiprocessor resources
(register file; sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread
blocks
Blocks, grids: Multiple dimensions

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 76 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

FromOpenACC to CUDA
map(||acc,||<<<>>>)

In general: Compiler free to do what it thinks is best
Usually
gang Mapped to blocks (coarse grain)

worker Mapped to threads (fine grain)
vector Mapped to threads (fine SIMD/SIMT)

seq No parallelism; sequential
Exact mapping compiler dependent
Performance tips
— Use vector size divisible by 32
— Block size: num_workers× vector_length

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 77 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Declaration of Parallelism
Specify configuration of threads

Three clauses of parallel region (parallel, kernels) for changing
distribution/configuration of group of threads
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

 OpenACC: gang worker vector

#pragma acc parallel loop gang vector
Also: worker
Size: num_gangs(n), num_workers(n), vector_length(n)

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 78 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Understanding Compiler Output II

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Compiler reports configuration of parallel entities
— Gangmapped to blockIdx.x
— Vectormapped to threadIdx.x
— Worker not used

Here: 128 threads per block; as many blocks as needed
128 seems to be default for Tesla/NVIDIA

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 79 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

More Parallelism
Unsequentialize inner loop

TASK 6

Add vector clause to inner loop
Study result with profiler

Task 6: More Parallelism

Change to Task6/ directory
Work on TODO
Compile: make
Submit to the batch system: make run
Generate profile with make profile_tofile

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 80 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

More Parallelism
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 81 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
Run Result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 111.7712 s, This: 0.9257 s, speedup: 120.74

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 82 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Region
Run Result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 111.7712 s, This: 0.9257 s, speedup: 120.74

Actually slower!
Why?

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 82 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory Coalescing
Memory in batch

Coalesced access good
— Threads of warp (group of 32 contiguous threads) access adjacent

words
— Few transactions, high utilization
Uncoalesced access bad
— Threads of warp access scattered words
— Many transactions, low utilization

Best performance: threadIdx.x should access contiguously

0 1 … 31 0 1 … 31

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 83 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi’s Access Pattern
Coalesced or uncoalesced, that is the question

#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

#pragma acc loop vector
for (int iy = iy_start; iy < iy_end; iy++) {

Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

Fast-running index: ix
Slow-running index: iy
But vector loop over iy!
Consecutive threads access far awaymemory location!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 84 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Loop change

TASK 7

Interchange loop order for Jacobi loops
Also: Compare to loop-fixed CPU reference version

Task 7: Loop Ordering

Change to Task7/ directory
Work on TODO
Compile: make
Submit to the batch system: make run

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 85 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Compiler output (unchanged)

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code

110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 86 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Run Result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 87 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Run Result

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 113.0214 s, This: 0.3284 s, speedup: 344.15

Again with proper CPU version!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 87 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Run Result II

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 88 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Fixing Access Pattern
Run Result II

$ make run
bsub -I -R "rusage[ngpus_shared=20]" ./poisson2d
Job <4490> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.8080 s, This: 0.2609 s, speedup: 26.10

26× is great!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 88 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
— Memory pages of memory can bemoved by kernel, e.g. swapped to

disk
— Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)

+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 89 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
— Memory pages of memory can bemoved by kernel, e.g. swapped to

disk
— Additional indirection
NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)

+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 89 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
— Memory pages of memory can bemoved by kernel, e.g. swapped to

disk
— Additional indirection
NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)

+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 89 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Page-Locked Memory
Loop change

TASK 7’

Compare performance with and without pinnedmemory
Also test unified memory again

Task 7’: Pinned Memory

Like in Task 7, but change compilation to include pinned or
managed
Submit to the batch system: make run

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 90 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACCWorkflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 91 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Interoperability

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 92 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Interoperability

OpenACC can operate together with
— Applications
— Libraries
— CUDA

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 93 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Keyword
OpenACC’s Rosetta Stone

host_data use_device

Background
— GPU and CPU are different devices, have different memory
→ Distinct address spaces
OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel
But: Automatic handling not working when out of OpenACC
(OpenACC will default to host address)

→ host_data use_device uses the address of the GPU device data
for scope

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 94 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Keyword
OpenACC’s Rosetta Stone

host_data use_device

Background
— GPU and CPU are different devices, have different memory
→ Distinct address spaces
OpenACC hides handling of addresses from user
— For every chunk of accelerated data, two addresses exist
— One for CPU data, one for GPU data
— OpenACC uses appropriate address in accelerated kernel
But: Automatic handling not working when out of OpenACC
(OpenACC will default to host address)

→ host_data use_device uses the address of the GPU device data
for scope

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 94 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The host_data Construct
That’s all you need

Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device
{
...
#pragma acc host_data use_device(foo)
some_lfunc(foo); // Device: OK!
...

}

Directive can be used for structured block as well

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 95 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
→ Use this data in OpenACC context

deviceptr clause declares data to be on device

Usage:
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int i = 0; i < n; i++) {

x[i] = i;
}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 96 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
— Data has been copied by CUDA or a CUDA-using library
— Pointer to data residing on devices is returned
→ Use this data in OpenACC context

deviceptr clause declares data to be on device
Usage:
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int i = 0; i < n; i++) {

x[i] = i;
}

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 96 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Interoperability
Tasks

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 97 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 1
Introduction to BLAS

Use case: Anything linear algebra
BLAS: Basic Linear Algebra Subprograms
— Vector-vector, vector-matrix, matrix-matrix operations
— Specification of routines
— Examples: SAXPY, DGEMV, ZGEMM
→ http://www.netlib.org/blas/

cuBLAS: NVIDIA’s linear algebra routines with BLAS interface,
readily accelerated
→ http://docs.nvidia.com/cuda/cublas/
Task 1: Use cuBLAS for vector addition, everything else with
OpenACC

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 98 111

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-1
cuBLAS OpenACC Interaction

cuBLAS routine used:
cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy)

handle capsules GPU auxiliary data, needs to be created and
destroyed with cublasCreate and cublasDestroy

x and y point to addresses on device!
cuBLAS library needs to be linked with -lcublas

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 99 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-1
Vector Addition with cuBLAS

Use cuBLAS for vector addition

Task 8-1: OpenACC +cuBLAS

Change to Task8-1/ directory
Work on TODOs in vecAddRed.c
— Use host_data use_device to provide correct pointer
— Check cuBLAS documentation for details on cublasDaxpy()

Compile: make
Submit to the batch system: make brun

TASK 8-1

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 100 111

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-2
CUDA Need-to-Know

Use case:
— Working on legacy code
— Need the raw power (/flexibility) of CUDA
CUDA need-to-knows:
— Thread→ Block→ Grid

Total number of threads should map to your problem; threads are
alway given per block

— A kernel is called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(arg1, arg2, ...)

— Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x

→ http://docs.nvidia.com/cuda/

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 101 111

http://docs.nvidia.com/cuda/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-2
Vector Addition with CUDA Kernel

TASK 8-2

CUDA kernel for vector addition, rest OpenACC
Marrying CUDA C and OpenACC:
— All direct CUDA interaction wrapped in wrapper file

cudaWrapper.cu, compiled with nvcc to object file (-c)
— vecAddRed.c calls external function from cudaWrapper.cu (extern)

Task 8-2: OpenACC +CUDA

Change to Task8-2/ directory
Work on TODOs in vecAddRed.c and cublasWrapper.cu
— Use host_data use_device to provide correct pointer
— Implement computation in kernel, implement call of kernel

Compile: make
Submit to the batch system: make brun

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 102 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-3
Vector Addition with Thrust

8-3
Thrust
— Template library for CUDA C/C++ (similar to STL)
— Offers many pre-made algorithms for popular computing tasks
— Usually works with C++ iterators, but understands C arrays as well
→ http://thrust.github.io/
Use Thrust for reduction, everything else of vector addition with OpenACC

Task 8-3: OpenACC +CUDA

Change to Task8-3/ directory

Work on TODOs in vecAddRed.c and thrustWrapper.cu
— Use host_data use_device to provide correct pointer
— Implement call tothrust::reduce usingc_ptr
Compile: make

Submit to the batch system: make brun

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 103 111

http://thrust.github.io/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
Stating the Problem

Wewant to solve the Poisson equation

ΔΦ(x, y) = −ρ(x, y)

with periodic boundary conditions in x and y
Needed, e.g., for finding electrostatic potential Φ for a given
charge distribution ρ
Model problem

ρ(x, y) = cos(4πx) sin(2πy)
(x, y) ∈ [0, 1)2

Analytically known: Φ(x, y) = Φ0 cos(4πx) sin(2πy)
Let’s solve the Poisson equation with a Fourier Transform!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 104 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
Introduction to Fourier Transforms

Discrete Fourier Transform and Re-Transform:

f̂k =
N−1∑
j=0

fje−
2πik
N j ⇔ fj =

N−1∑
k=0

f̂ke
2πij
N k

Time for all f̂k: O(N2)

Fast Fourier Transform: Recursively splitting→O(N log(N))
Find derivatives in Fourier space:

f′j =
N−1∑
k=0

ik̂fke
2πij
N k

It’s just multiplying by ik!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 105 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)
2 Integrate ρ in Fourier space twice

φ̂← −ρ̂/
(
k2x + k2y

)
3 Inverse Fourier-transform φ̂

φ← F−1(φ̂)

cuFFT

OpenACC

cuFFT

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 106 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)
2 Integrate ρ in Fourier space twice

φ̂← −ρ̂/
(
k2x + k2y

)
3 Inverse Fourier-transform φ̂

φ← F−1(φ̂)

cuFFT

OpenACC

cuFFT

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 106 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
cuFFT

cuFFT: NVIDIA’s (Fast) Fourier Transform library
— 1D, 2D, 3D transforms; complex and real data types
— Asynchronous execution
— Modeled after FFTW library (API)
— Part of CUDA Toolkit
→ https://developer.nvidia.com/cufft

cufftDoubleComplex *src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);
cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD); // FFT
cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo ^----^
cufftDestroy(plan); // Clean-up

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 107 111

https://developer.nvidia.com/cufft

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
Synchronizing cuFFT

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC not→ trouble

⇒ Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream =

(cudaStream_t) acc_get_cuda_stream(acc_async_sync) ;
// Execute all cufft calls on this stream
cufftSetStream(accStream);

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 108 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Task 8-4
OpenACC and cuFFT

Use case: Fourier transforms
Use cuFFT and OpenACC to solve Poisson’s Equation

Task 8-4: OpenACC +cuFFT

Change to Task8-4/ directory
Work on TODOs in poisson.c
solveRSpace Force cuFFT on correct stream; implement

data handling with host_data use_device
solveKSpace Implement data handling and parallelism
Compile: make
Submit to the batch system: make brun

TASK 8-4

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 109 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 110 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N])
reduction(max:err) vector
Start easy, optimize from there
PGI / NVIDIA Visual Profiler help to find bottlenecks
OpenACC is interoperable to other GPU programmingmodels
Don’t forget the CPU version!

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 111 111

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N])
reduction(max:err) vector
Start easy, optimize from there
PGI / NVIDIA Visual Profiler help to find bottlenecks
OpenACC is interoperable to other GPU programmingmodels
Don’t forget the CPU version! Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 111 111

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
List of Tasks
Glossary
References

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 1 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

List of Tasks

Task 0⋆: Setup
Task 0: Getting Started
Task 1: Analyze Application
Task 2: A First Parallel Loop
Task 3: More Parallel Loops
Task 4: Data Copies
Task 5: Data Region
Task 6: More Parallelism
Task 7: Loop Ordering
Task 7’: Pinned Memory
Task 8-1: OpenACC +cuBLAS
Task 8-2: OpenACC +CUDA
Task 8-3: OpenACC +CUDA
Task 8-4: OpenACC +cuFFT

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 2 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

API A programmatic interface to software by well-defined
functions. Short for application programming
interface. 79

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 33, 46, 79, 93, 94, 95, 96, 131, 152, 156, 157,
162, 163, 164, 169, 170, 176, 177

GCC The GNU Compiler Collection, the collection of open
source compilers, among others for C and Fortran. 45,
49

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 3 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

NVIDIA US technology company creating GPUs. 39, 79, 92, 97,
98, 105, 106, 146, 147, 148, 159, 169, 173, 174, 177

OpenACC Directive-based programming, primarily for many-core
machines. 2, 33, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49,
50, 51, 52, 53, 62, 69, 70, 72, 74, 76, 79, 82, 87, 97, 98, 99,
100, 108, 117, 124, 127, 131, 132, 146, 147, 148, 150,
152, 153, 154, 156, 157, 159, 160, 161, 163, 164, 167,
168, 170, 171, 173, 174, 176

OpenCL The Open Computing Language. Framework for writing
code for heterogeneous architectures (CPU, GPU, DSP,
FPGA). The alternative to CUDA. 33

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 4 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

OpenMP Directive-based programming, primarily for
multi-threadedmachines. 2, 33, 40, 41, 42, 50, 84, 85,
86

Pascal GPU architecture from NVIDIA (announced 2016). 93,
94, 95, 96

Thrust A parallel algorithms library for (among others) GPUs.
See https://thrust.github.io/. 33

CPU Central Processing Unit. 4, 5, 6, 7, 8, 9, 10, 11, 12, 45,
50, 79, 93, 94, 95, 96, 140, 143, 153, 154, 173, 174, 177

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 5 8

https://thrust.github.io/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary IV

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
23, 24, 25, 26, 33, 45, 48, 50, 70, 76, 79, 92, 93, 94, 95, 96,
97, 98, 105, 115, 116, 118, 146, 147, 148, 153, 154, 160,
162, 173, 174, 177

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 6 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References I

[3] Gene M. Amdahl. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”. In: Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference. AFIPS
’67 (Spring). Atlantic City, New Jersey: ACM, 1967, pp. 483–485.
DOI: 10.1145/1465482.1465560. URL:
http://doi.acm.org/10.1145/1465482.1465560.

[4] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commun.
ACM 31.5 (May 1988), pp. 532–533. ISSN: 0001-0782. DOI:
10.1145/42411.42415. URL:
http://doi.acm.org/10.1145/42411.42415.

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 7 8

https://doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics

[1] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/
(pages 4, 5).

[2] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/
(pages 4, 5).

Andreas Herten | OpenACC Tutorial | 31 August 2017 # 8 8

https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

	The GPU Platform
	Introduction
	Threading Model
	App Showcase
	Parallel Models

	OpenACC
	History
	openmp
	Modus Operandi
	*openacc's Models

	*openacc by Example
	*openacc Workflow
	Identify Parallelism
	Parallelize Loops
	Data Transfers
	Data Locality
	Optimize

	Interoperability
	The Keyword
	Tasks

	Conclusions
	Appendix
	Appendix
	List of Tasks
	Glossary
	References

