
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Brain Research Applications on Minsky
OpenPOWER Academia Discussion Group Workshop 2017

Andreas Herten, Forschungszentrum Jülich, 10 November 2017 Handout Version

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Outline

Brain Research
History
Today’s Challenges
Human Brain Project

HBP Pilot Systems
Motivation
JURON
Eurohack

Applications
TVB-HPC
Arbor
PLI ICA
Others

Forschungszentrum Jülich, Germany
Jülich Supercomputing Centre
POWER Acceleration and Design Centre
Strong connection to neuroscience (HPCNS)

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 2 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of Brain Research
A long way down

1700 BC: Already Egyptians had some knowledge about brain
structure
17th c.: Neurology, status of brain: Thomas Willis (et al)
19th c.: Visualization, neuron doctrine: Golgi→ Ramón y Cajal
Late 19th c.: neuron electrically excitable
20th c.: Brodmann areas (1909); Hodgkin-Huxley model (1952);
neuroscience

Today: Brain still not fully decoded
— Brain atlases in high resolution
— Models to describe dynamic behavior
→ Large-scale efforts

Willis (1664)

Ramón y Cajal (1888)

Gray and Lewis (1918)
Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 3 33

History of Brain Research
A long way down

1700 BC: Already Egyptians had some knowledge about brain
structure
17th c.: Neurology, status of brain: Thomas Willis (et al)
19th c.: Visualization, neuron doctrine: Golgi→ Ramón y Cajal
Late 19th c.: neuron electrically excitable
20th c.: Brodmann areas (1909); Hodgkin-Huxley model (1952);
neuroscience

Today: Brain still not fully decoded
— Brain atlases in high resolution
— Models to describe dynamic behavior
→ Large-scale efforts

Willis (1664)

Ramón y Cajal (1888)

Gray and Lewis (1918)

20
17

-1
1-
10

Brain Research Applications on Minsky
Brain Research

History
History of Brain Research

A long way towards understanding of features of the brain

• Egyptians: Drilling hole into skull to cure headaches; brain damage

• Willis: Detailed anatomy of the brain, Cerebri anatome: cui accessit nervorum descriptio et
ususwith detailed drawings; neurology

• Cajal uses method of staining brains developed by Golgi (silver chromate) to visualize fibres;
start of neural doctrine (=neurons are functional unit of brain)

• Late 19th century: Experiments find that the neuron is electrically excitable

• Brodmann defines areas to create atlas of responsibilities (still used today); Hodgkin-Huxly
developmodel to describe neurons as electrical circuits with help of giant squid (action
potential); neuroscience is done

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Today’s Brain Challenges
A high complexity

Many neurons: O(1011)
Many connections: O(104) synapses per
neuron
Multi-scale behavior
— Molecular level
— Cellular level
— Brain regions
— Whole system
Power efficiency
— Whole human brain: 30W
— Simulation: entire supercomputer to

model small region

Complex data collection
Frackowiak and Markram (2015)

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 4 33

Today’s Brain Challenges
A high complexity

Many neurons: O(1011)
Many connections: O(104) synapses per
neuron
Multi-scale behavior
— Molecular level
— Cellular level
— Brain regions
— Whole system
Power efficiency
— Whole human brain: 30W
— Simulation: entire supercomputer to

model small region

Complex data collection
Frackowiak and Markram (2015)

20
17

-1
1-
10

Brain Research Applications on Minsky
Brain Research

Today’s Challenges
Today’s Brain Challenges

• There are many neurons

• There are many connections between for neuron

→ There are manymany connections in total

• Different effects for different biological scales: zooming in reveals new features; just like in
physics

• Brain runs on amazingly low power footprint

• Data collection is very complex: (some) dynamic studies only with large apparatus; static, but
high-res studies only post-mortem, and even then is brain a complex 3D structure

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Human Brain Project
HBP as a flagship

1 Billion € (co-funded EC and national), 10 year endeavor, ∗2013
Future and Emerging Technologies flagship of European Commission (Horizon 2020)
12 sub-projects, covering multiple scales and technologies (SP7: HPC)
Specific Grant Agreement 1 (2016 - 2018): 114 participants
Goal: Build integrated ICT infrastructure to enable global collaborative effort towards
understanding human brain, ultimately emulate its computational capabilities

→ https://www.humanbrainproject.eu/

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 5 33

https://www.humanbrainproject.eu/

Human Brain Project
HBP as a flagship

1 Billion € (co-funded EC and national), 10 year endeavor, ∗2013
Future and Emerging Technologies flagship of European Commission (Horizon 2020)
12 sub-projects, covering multiple scales and technologies (SP7: HPC)
Specific Grant Agreement 1 (2016 - 2018): 114 participants
Goal: Build integrated ICT infrastructure to enable global collaborative effort towards
understanding human brain, ultimately emulate its computational capabilities

→ https://www.humanbrainproject.eu/20
17

-1
1-
10

Brain Research Applications on Minsky
Brain Research

Human Brain Project
Human Brain Project

To understand (decode) such a complex organ is an endeavor which needs
a large-scale effort→ EU Flagship Project

• Funding: 50% from EU, 50% from partners

• Sub-projects which focus on different kinds of efforts (mouse brains, theoretical,
neuromorphic computing, …, even robotics!)

• Current: Specific Grant Agreement 1

https://www.humanbrainproject.eu/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HBP Pilot Systems

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 6 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HBP & Supercomputers

Measuring and simulating brain components: computational intensive!
→ High Performance Analytics and Computing Platform (HPAC)

Large-scale brain simulations: PFLOP/s, PB
→ Need capability of a supercomputer!
Special requirements
— Interactive, scalable visualization (in-situ)
— Large memory footprint of data (dense memory, fast interconnects)
— Dynamic resource management, interactive steering
— Various data sources (eventually: federated services)

→ Pre-Commercial Procurement of two systems: JULIA and JURON

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 7 33

HBP & Supercomputers

Measuring and simulating brain components: computational intensive!
→ High Performance Analytics and Computing Platform (HPAC)

Large-scale brain simulations: PFLOP/s, PB
→ Need capability of a supercomputer!
Special requirements
— Interactive, scalable visualization (in-situ)
— Large memory footprint of data (dense memory, fast interconnects)
— Dynamic resource management, interactive steering
— Various data sources (eventually: federated services)

→ Pre-Commercial Procurement of two systems: JULIA and JURON

20
17

-1
1-
10

Brain Research Applications on Minsky
HBP Pilot Systems

Motivation
HBP & Supercomputers

• Already now, HBP needs many computing resource for all the simulations andmeasurements
→ HPAC

• But simulations will get more andmore sophisticated, so demand only increases

• With that large performance need: Special requirements to supercomputers identified

• PCP newway of EU to involve vendors into procurement

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HPAC Platform
High Performance Analytics and Computing

HPC and data infrastructure services
Currently: loosely coupled, not yet federated
Current components
— Supercomputers at BSC (MareNostrum 4), CINECA

(Pico,MARCONI), CSCS (Piz Daint), JSC (JUQUEEN,
JURECA, Pilots)

— Cloud services at KIT
— Visualization services at RWTH and EPFL

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 8 33

HPAC Platform
High Performance Analytics and Computing

HPC and data infrastructure services
Currently: loosely coupled, not yet federated
Current components
— Supercomputers at BSC (MareNostrum 4), CINECA

(Pico,MARCONI), CSCS (Piz Daint), JSC (JUQUEEN,
JURECA, Pilots)

— Cloud services at KIT
— Visualization services at RWTH and EPFL

20
17

-1
1-
10

Brain Research Applications on Minsky
HBP Pilot Systems

Motivation
HPAC Platform

• Largest European supercomputers bundled

• Eventually coupled together

• Currently on the way there, with individual parts finished (collaboratory, UNICORE)

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HBP & Supercomputers

Measuring and simulating brain components: computational intensive!
→ High Performance Analytics and Computing Platform (HPAC)

Large-scale brain simulations: PFLOP/s, PB
→ Need capability of a supercomputer!
Special requirements
— Interactive, scalable visualization (in-situ)
— Large memory footprint of data (dense memory, fast interconnects)
— Dynamic resource management, interactive steering
— Various data sources (eventually: federated services)

→ Pre-Commercial Procurement of two systems: JULIA and JURON

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 9 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JULIA & JURON

JURONJULIA

JULIA & JURON: Human Brain Project Prototypes

JULIA
Cray (CS-Storm)
60 nodes, each 1
Intel Xeon Phi KNL
OmniPath network

JURON
IBM-NVIDIA (Minsky)
18 nodes, each 2 P8’,
4 P100, NVMe SSDs
InfiniBand EDR

Common local storage

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 10 33

https://hbp-hpc-platform.fz-juelich.de/?page_id=1063
https://hbp-hpc-platform.fz-juelich.de/?page_id=1073

JULIA & JURON

JURONJULIA

JULIA & JURON: Human Brain Project Prototypes

JULIA
Cray (CS-Storm)
60 nodes, each 1
Intel Xeon Phi KNL
OmniPath network

JURON
IBM-NVIDIA (Minsky)
18 nodes, each 2 P8’,
4 P100, NVMe SSDs
InfiniBand EDR

Common local storage

20
17

-1
1-
10

Brain Research Applications on Minsky
HBP Pilot Systems

JURON
JULIA & JURON

• Two system: Intel-KNL-based JULIA and POWER8’-P100-based JURON

• Match requirements in their own ways

• Middle: A common storage cluster, attached to JURON and JULIA faster than Jülich’s global
file system GPFS

https://hbp-hpc-platform.fz-juelich.de/?page_id=1063
https://hbp-hpc-platform.fz-juelich.de/?page_id=1073

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

System Configuration

juronc01

juronc02

juronc03

juronc04

juronc05
juronc06

juronc07
juronc08 juronc09 juronc10 juronc11

juronc12
juronc13

juronc14

juronc15

juronc16

juronc17

juronc18

juron1-adm
 









JURON = Juelich + Neuron
≈350 TFLOP/s peak (double)
Memory
Technology Capacity / TB Bandwidth / TB/s

HBM2 1.1 52
DDR4 4.5 4.1
NAND flash 28 0.05

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s

11 33

System Configuration

juronc01

juronc02

juronc03

juronc04

juronc05
juronc06

juronc07
juronc08 juronc09 juronc10 juronc11

juronc12
juronc13

juronc14

juronc15

juronc16

juronc17

juronc18

juron1-adm
 









JURON = Juelich + Neuron
≈350 TFLOP/s peak (double)
Memory
Technology Capacity / TB Bandwidth / TB/s

HBM2 1.1 52
DDR4 4.5 4.1
NAND flash 28 0.05

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s20
17

-1
1-
10

Brain Research Applications on Minsky
HBP Pilot Systems

JURON
System Configuration

• JURON’s 18 compute nodes, connected via Ethernet and InfiniBand to switch; login node
connected via Ethernet to switch

• Login node: access from outside and to Jülich storage resources (+ PCP storage system)

• Also: 4 visualization nodes with direct access from outside

• Capacity and bandwidth are combined values

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Hackathon in Jülich
First HBP Applications on JURON

Eurohack: 1 week of application porting to GPU at JSC in March 2017
10 teams; 3 neuroscience

Arbor Optimizing GPU code of simulation (formerly NestMC)
TVB-HPC First port of back-end to CUDA

The PLI Guys Build CUDA back-end to Python simulation
— >1000 jobs launched, 2⁄3 on JURON
— Every team accelerated code and went homemotivated

→ Strong interest in GPU and JURON

12 33

https://blogs.fz-juelich.de/zweikommazwei/en/2017/03/16/gpu-hackathon-at-juelich-supercomputing-centre

GPU Hackathon in Jülich
First HBP Applications on JURON

Eurohack: 1 week of application porting to GPU at JSC in March 2017
10 teams; 3 neuroscience

Arbor Optimizing GPU code of simulation (formerly NestMC)
TVB-HPC First port of back-end to CUDA

The PLI Guys Build CUDA back-end to Python simulation
— >1000 jobs launched, 2⁄3 on JURON
— Every team accelerated code and went homemotivated

→ Strong interest in GPU and JURON

20
17

-1
1-
10

Brain Research Applications on Minsky
HBP Pilot Systems

Eurohack
GPU Hackathon in Jülich

• GPU Hackathon (Eurohack) in Jülich; one of the events organized with ORNL all over the world

• Intense work atmosphere, very productive

• Three applications from neuroscience, in the following presented as examples

https://blogs.fz-juelich.de/zweikommazwei/en/2017/03/16/gpu-hackathon-at-juelich-supercomputing-centre

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Applications

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 13 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Diverse Set of Applications
Many scales, many steps

Simulation
— Regions: The Virtual Brain
— Neural networks: Nest
— Neurons with compartments: Arbor, Neuron
Measurement
— Coupling of data
— Electrophysiology
Post-processing
— Post-processing of scanned data
— Automated stitching
— Matching of images taken with different methods

M
em

be
r

of
th

e
H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

8

Convolutional Neural Network (CNN)

Image pre-processing Network Mask reconstruction

10 October 2017 SimLab Neuroscience Steering Committee Meeting

Khalid (2017)

Axer (2017)

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 14 33

Diverse Set of Applications
Many scales, many steps

Simulation
— Regions: The Virtual Brain
— Neural networks: Nest
— Neurons with compartments: Arbor, Neuron
Measurement
— Coupling of data
— Electrophysiology
Post-processing
— Post-processing of scanned data
— Automated stitching
— Matching of images taken with different methods

M
em

be
r

of
th

e
H

el
m

ho
ltz

 A
ss

oc
ia

tio
n

8

Convolutional Neural Network (CNN)

Image pre-processing Network Mask reconstruction

10 October 2017 SimLab Neuroscience Steering Committee Meeting

Khalid (2017)

Axer (2017)20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

Diverse Set of Applications

• Jülich specializes in tools for simulation and post-processing of scanned data

• Strong connection with Supercomputing Centre, specialized interface division: High
Performance Computing in Neuro Science (HPCNS) + Simulation Lab Neuro Science (SLNS)

• There’s muchmore to it – 12 sub-projects of HBP

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Applications
TVB-HPC

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 15 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The Virtual Brain

Framework for simulation of brain dynamics on large scale [6]
— Biologically realistic connectivity matrix (connectome)
— Neural mass models, sparse matrix linear solution (60 - 1000

elements), several free parameters
— Models built on top of clinical data (fMRI, …)
— Goal: Help patients with neurological disorders, compare brain
Current software stack
— Python simulation core, expendable by Matlab scripts
— Web-based visual control center
— Domain-Specific Language to describe brain models (IDLE)

→ http://www.thevirtualbrain.org/tvb/

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 16 33

http://www.thevirtualbrain.org/tvb/

The Virtual Brain

Framework for simulation of brain dynamics on large scale [6]
— Biologically realistic connectivity matrix (connectome)
— Neural mass models, sparse matrix linear solution (60 - 1000

elements), several free parameters
— Models built on top of clinical data (fMRI, …)
— Goal: Help patients with neurological disorders, compare brain
Current software stack
— Python simulation core, expendable by Matlab scripts
— Web-based visual control center
— Domain-Specific Language to describe brain models (IDLE)

→ http://www.thevirtualbrain.org/tvb/20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

TVB-HPC
The Virtual Brain

• TVB: software infrastructure to simulate individual brains as models

• Match with measurements; structural vs. functional data

• Eventual goal: simulate a patient’s brain in software and guide cure for illness

• Basically written in Python with interfaces to individual Matlab scripts for extension

• View the virtual brain at a web-based applications

• DSL for description of brain models

• Pictures

1. Logo TVB
2. Flow of typical brain simulation; input are fibre structures (up, connectome, visualized for

example with Diffusion Tensor Imaging) and regions of brain
3. Connectome close-up

http://www.thevirtualbrain.org/tvb/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Example TVB Science on JURON

Recently run: Monte Carlo model inference for clinical epilepsy models
Pictures from “The Virtual Epileptic Patient: Individualized whole-brain models of
epilepsy spread” [7]
Currently single-threaded application; no performance gain yet

Pr
ov

id
ed

by
M
M
W
oo

dm
an

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 17 33

Example TVB Science on JURON

Recently run: Monte Carlo model inference for clinical epilepsy models
Pictures from “The Virtual Epileptic Patient: Individualized whole-brain models of
epilepsy spread” [7]
Currently single-threaded application; no performance gain yet

Pr
ov

id
ed

by
M
M
W
oo

dm
an

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

TVB-HPC
Example TVB Science on JURON

• Also TVB currently runs on JURON

• Example epileptic simulation

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

TVB-HPC

Traditional approach: Serial computation of models
TVB-HPC: Fast, parallel back-end (parallel in parameters)
At GPU hackathon:
— Optimize specific mass, coupling, post-processing models
— Study data access issues
— Learn advanced GPU techniques
→ 20× speedup

JURON: CUDA code for Kuramotomodel as proof-of-concept
Since then: Automated code generation

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 18 33

TVB-HPC

Traditional approach: Serial computation of models
TVB-HPC: Fast, parallel back-end (parallel in parameters)
At GPU hackathon:
— Optimize specific mass, coupling, post-processing models
— Study data access issues
— Learn advanced GPU techniques
→ 20× speedup

JURON: CUDA code for Kuramotomodel as proof-of-concept
Since then: Automated code generation

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

TVB-HPC
TVB-HPC

• TVB: Serial simulation of single brain model

• TVB-HPC: Optimized, HPC-targeted simulation of multiple versions of model by simulating
many parameters of model at once in parallel

– First (and at Hackathon): One single model ported to CUDA – very good results
– Now: Focus on automated code generated

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Code Generation in TVB-HPC
Targeting different accelerators

Automatic code generation

Neural Mass
Model kernel

Coupling
kernel

Post-Processing
kernel

Integration
kernel state

connection
weights

diffs

drift
input output

E I

J

Background Noise
 Input from

other regions

Serial loop over time steps
osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)

class Kuramoto(BaseModel):
 state = 'theta'
 limit = (0, 2 * np.pi),
 input = 'I'
 param = 'omega'
 drift = 'omega + I',

class Kuramoto(Diff):
 pre_sum = 'sin(
 pre_syn - post_syn)',
 post_sum =
 'g_coupling * mean',

def euler(x, f, dt=None):
 dt = dt or pm.var('dt')
 return x + dt * f

class BalloonWindkessel(BaseModel):
 state = 's f v q'
 drift = (
 'x - RT_S * s - RT_F * (f - 1)', 's',
 'RT_O * (f - v**RECIP_ALPHA)',
 'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
 ' - v**RECIP_ALPHA * (q / v))'
) ...

Parallel over parameter sets
knl = lp.to_batched(knl, subject, [a, delays],
i_subject, sequential=False)

Acknowledgments
We would like to thank our collaborators Lia Domide, Mihai Andrei, Vlad Prunar, Petra Ritter,
Michael Schirner and Olaf Sporns. The authors would also like to acknowledge the support by the
Excellence Initiative of the German federal and state governments, the JARA and CRCNS grant and
the Helmholtz Association through the portfolio theme SMHB and the Initiative and Networking
Fund. In addition, this project has received funding from the European Union's Horizon 2020
research and innovation program under grant agreement No 720270 (HBP SGA1).

Motivation

Performance results

High performance computing is becoming every day a more accessible
and desirable concept for researchers in neuroscience.
We want to design code to utilize the full power of supercomputers, GPUs
and other computational accelerators in a dynamic, maintainable, scalable
and robust fashion.
Optimize the workflows and models currently available in The Virtual Brain
software (Sanz Leon et al. 2013).

Automatically generating HPC-optimized code for
simulations using neural mass models

Marmaduke Woodman , Sandra Diaz-Pier , Alexander Peyser1 2 2

1. Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2. Simulation Laboratory Neuroscience -- Bernstein Facility for Simulation and Database Technology.

Institute for Advanced Simulation, Jülich Forschungszentrum, Jülich, Germany

Describe your neural mass model with a high level language.
Combine it with an integration kernel and a coupling kernel to build a
network workflow.
Define a post-processing kernel.
Use our framework based on Loo.py (Kloeckner 2014) to easily create a
loop over time and a parallel computation kernel over parameter sets.

Same high level code, multiple target platforms!

Our approach

Numba
Easy integration to python code
Optimized routines and runs on any CPU. JIT
generation of LLVM code.
Flexibility to move into the CUDA version of numba,
which allows seamless GPU usage from python.

OpenCL

Benefit from different OpenCL platforms like GPUs,
CPUs and FPGAs.
High flexibility, clear code which can be easily ported.

CUDA

High performance utilizing the computational
capabilities of GPUs.
Enables large parallel parameter searches in short
time.

Discussion

Run on different architectures and accelerators like GPUs without changing
the top level description of the kernels.
Flexible parallelization using Loo.py.
Hidden complexity to the user, big computational power underneath.
Great performance boost on GPUs.

Want to get involved in the development?
Take a look at our code:

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated
code for a test kernel

from __future__ import division, print_function

import numpy as _lpy_np
import numba as _lpy_numba

@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec,
out):
 for i in range(0, -1 + n + 1):
 jhi = row[i + 1]
 jlo = row[i]
 for k in range(0, -1 + n + 1):
 acc_j = 0
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[i] = k*acc_j

@ncu.jit
def loopy_kernel_inner(
 n, nnz, row, col, dat, vec, out):
 if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
 acc_j = 0
 jhi = row[1 + tIdx.x + bIdx.x*512]
 jlo = row[tIdx.x + bIdx.x*512]
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[tIdx.x + bIdx.x*512] =
 (tIdx.y + bIdx.y*512)*acc_j

def loopy_kernel(
 n, nnz, row, col, dat, vec, out):
 loopy_kernel_inner[((511 + n) // 512,
 (511 + n) // 512),
 (512, 512)]
 (n, nnz, row, col, dat, vec, out)

Numba + CUDA Numba

Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition)
of the Jülich Supercomputing Centre with a test kernel.

Numba Cuda speedup against Numba
for different load and #of threads

Execution times for different
targets and loads

Scales linearly:
10x bigger computer = 10x more data processed in the same time!

S
p
e
e
d
u
p

Threads per block

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Target

DSL for models (types, dimensions, flow, dependencies)
Generate parameter-parallel code with loo.py; back-ends: CUDA, OpenCL, Numba, C

S.
Di
az

(2
01

7)

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 19 33

https://github.com/inducer/loopy

Code Generation in TVB-HPC
Targeting different accelerators

Automatic code generation

Neural Mass
Model kernel

Coupling
kernel

Post-Processing
kernel

Integration
kernel state

connection
weights

diffs

drift
input output

E I

J

Background Noise
 Input from

other regions

Serial loop over time steps
osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)

class Kuramoto(BaseModel):
 state = 'theta'
 limit = (0, 2 * np.pi),
 input = 'I'
 param = 'omega'
 drift = 'omega + I',

class Kuramoto(Diff):
 pre_sum = 'sin(
 pre_syn - post_syn)',
 post_sum =
 'g_coupling * mean',

def euler(x, f, dt=None):
 dt = dt or pm.var('dt')
 return x + dt * f

class BalloonWindkessel(BaseModel):
 state = 's f v q'
 drift = (
 'x - RT_S * s - RT_F * (f - 1)', 's',
 'RT_O * (f - v**RECIP_ALPHA)',
 'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
 ' - v**RECIP_ALPHA * (q / v))'
) ...

Parallel over parameter sets
knl = lp.to_batched(knl, subject, [a, delays],
i_subject, sequential=False)

Acknowledgments
We would like to thank our collaborators Lia Domide, Mihai Andrei, Vlad Prunar, Petra Ritter,
Michael Schirner and Olaf Sporns. The authors would also like to acknowledge the support by the
Excellence Initiative of the German federal and state governments, the JARA and CRCNS grant and
the Helmholtz Association through the portfolio theme SMHB and the Initiative and Networking
Fund. In addition, this project has received funding from the European Union's Horizon 2020
research and innovation program under grant agreement No 720270 (HBP SGA1).

Motivation

Performance results

High performance computing is becoming every day a more accessible
and desirable concept for researchers in neuroscience.
We want to design code to utilize the full power of supercomputers, GPUs
and other computational accelerators in a dynamic, maintainable, scalable
and robust fashion.
Optimize the workflows and models currently available in The Virtual Brain
software (Sanz Leon et al. 2013).

Automatically generating HPC-optimized code for
simulations using neural mass models

Marmaduke Woodman , Sandra Diaz-Pier , Alexander Peyser1 2 2

1. Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2. Simulation Laboratory Neuroscience -- Bernstein Facility for Simulation and Database Technology.

Institute for Advanced Simulation, Jülich Forschungszentrum, Jülich, Germany

Describe your neural mass model with a high level language.
Combine it with an integration kernel and a coupling kernel to build a
network workflow.
Define a post-processing kernel.
Use our framework based on Loo.py (Kloeckner 2014) to easily create a
loop over time and a parallel computation kernel over parameter sets.

Same high level code, multiple target platforms!

Our approach

Numba
Easy integration to python code
Optimized routines and runs on any CPU. JIT
generation of LLVM code.
Flexibility to move into the CUDA version of numba,
which allows seamless GPU usage from python.

OpenCL

Benefit from different OpenCL platforms like GPUs,
CPUs and FPGAs.
High flexibility, clear code which can be easily ported.

CUDA

High performance utilizing the computational
capabilities of GPUs.
Enables large parallel parameter searches in short
time.

Discussion

Run on different architectures and accelerators like GPUs without changing
the top level description of the kernels.
Flexible parallelization using Loo.py.
Hidden complexity to the user, big computational power underneath.
Great performance boost on GPUs.

Want to get involved in the development?
Take a look at our code:

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated
code for a test kernel

from __future__ import division, print_function

import numpy as _lpy_np
import numba as _lpy_numba

@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec,
out):
 for i in range(0, -1 + n + 1):
 jhi = row[i + 1]
 jlo = row[i]
 for k in range(0, -1 + n + 1):
 acc_j = 0
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[i] = k*acc_j

@ncu.jit
def loopy_kernel_inner(
 n, nnz, row, col, dat, vec, out):
 if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
 acc_j = 0
 jhi = row[1 + tIdx.x + bIdx.x*512]
 jlo = row[tIdx.x + bIdx.x*512]
 for j in range(jlo, -1 + jhi + 1):
 acc_j = acc_j + dat[j]*vec[col[j]]
 out[tIdx.x + bIdx.x*512] =
 (tIdx.y + bIdx.y*512)*acc_j

def loopy_kernel(
 n, nnz, row, col, dat, vec, out):
 loopy_kernel_inner[((511 + n) // 512,
 (511 + n) // 512),
 (512, 512)]
 (n, nnz, row, col, dat, vec, out)

Numba + CUDA Numba

Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition)
of the Jülich Supercomputing Centre with a test kernel.

Numba Cuda speedup against Numba
for different load and #of threads

Execution times for different
targets and loads

Scales linearly:
10x bigger computer = 10x more data processed in the same time!

S
p

e
e
d

u
p

Threads per block

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Target

DSL for models (types, dimensions, flow, dependencies)
Generate parameter-parallel code with loo.py; back-ends: CUDA, OpenCL, Numba, C

S.
Di
az

(2
01

7)

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

TVB-HPC
Code Generation in TVB-HPC

• User writes models in DSL

• Models aremost of the time neural massmodels, but also coupling and integration kernels (or
select one pre-existing for the latter)

• From DSL, loo.py is used to generate to-be-accelerated code

https://github.com/inducer/loopy

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Code Generation in TVB-HPC
Results on JURECA

Test kernel execution time (y/ms) for different targets Test kernel execution time speedup Numba+CUDA vs.
Numba (y) for different number of threads (x)

S.
Di
az

(2
01

7)

JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
Numba: Decorator-based auto-acceleration for Python (JIT compilation with @jit);
different targets

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 20 33

https://numba.pydata.org/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Code Generation in TVB-HPC
Results on JURECA

Generated CPU-targeted code
@_lpy_numba.jit
def loopy_krnl(n, nnz, row, col, dat, vec, out):

for i in range(0, -1 + n + 1):
jhi = row[i + 1]
jlo = row[i]
for k in range(0, -1 + n + 1):

acc_j = 0
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[i] = k*acc_j

Generated GPU-targeted code
@ncu.jit
def loopy_krnl_in(n, nnz, row, col, dat, vec, out):

if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 and -1
+ -512*bIdx.x + -1*tIdx.x + n >= 0:↪→

acc_j = 0
jhi = row[1 + tIdx.x + bIdx.x*512]
jlo = row[tIdx.x + bIdx.x*512]
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[tIdx.x + bIdx.x*512] = (tIdx.y +

bIdx.y*512)*acc_j↪→

S.
Di
az

(2
01

7)

JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
Numba: Decorator-based auto-acceleration for Python (JIT compilation with @jit);
different targets

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 20 33

https://numba.pydata.org/

Code Generation in TVB-HPC
Results on JURECA

Generated CPU-targeted code
@_lpy_numba.jit
def loopy_krnl(n, nnz, row, col, dat, vec, out):

for i in range(0, -1 + n + 1):
jhi = row[i + 1]
jlo = row[i]
for k in range(0, -1 + n + 1):

acc_j = 0
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[i] = k*acc_j

Generated GPU-targeted code
@ncu.jit
def loopy_krnl_in(n, nnz, row, col, dat, vec, out):

if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 and -1
+ -512*bIdx.x + -1*tIdx.x + n >= 0:↪→

acc_j = 0
jhi = row[1 + tIdx.x + bIdx.x*512]
jlo = row[tIdx.x + bIdx.x*512]
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[tIdx.x + bIdx.x*512] = (tIdx.y +

bIdx.y*512)*acc_j↪→

S.
Di
az

(2
01

7)

JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
Numba: Decorator-based auto-acceleration for Python (JIT compilation with @jit);
different targets20

17
-1
1-
10

Brain Research Applications on Minsky
Applications

TVB-HPC
Code Generation in TVB-HPC

• Current studies with loo.py generation on JURECA, but code runs also on JURON

• Up to 16-fold speed-up for Numba+CUDA vs Numba

• In Numba+CUDA, Numba generates CUDA code in run-time; also here loop.py provides the
raw code, which is more targeted towards CUDA already

https://numba.pydata.org/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Applications
Arbor

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 21 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Arbor Introduction

TVB: Large scale; effective models; dynamics
Nest: Biologically correct; point-like neurons; large, spiking networks
Arbor: Neurons with internal structure, multi-compartment

— Hodgkin-Huxley model: network of neurons as circuit [3]

— Neuron: axonic delay, synaptic functions, tree of cables
connecting to body

— Cables: electrical compartments (resistance, capacitance)

∂

∂x

(
σ
∂v

∂x

)
=

cm
∂v

∂t
+ rm(v − erev) +

∑
channels k

gk(v, t)(v − erevk)

 ·
∂S

∂x

+
∑

synapses k
Isynk (v, t)δxk +

∑
injections k

Iinjk (t)δxk

→ Neuron is (band) matrix based on known conductance

Ca
bl
e
PD

E
by

Sa
m

Ya
te
s

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 22 33

Arbor Introduction

TVB: Large scale; effective models; dynamics
Nest: Biologically correct; point-like neurons; large, spiking networks
Arbor: Neurons with internal structure, multi-compartment

— Hodgkin-Huxley model: network of neurons as circuit [3]

— Neuron: axonic delay, synaptic functions, tree of cables
connecting to body

— Cables: electrical compartments (resistance, capacitance)

∂

∂x

(
σ
∂v

∂x

)
=

cm
∂v

∂t
+ rm(v − erev) +

∑
channels k

gk(v, t)(v − erevk)

 ·
∂S

∂x

+
∑

synapses k
Isynk (v, t)δxk +

∑
injections k

Iinjk (t)δxk

→ Neuron is (band) matrix based on known conductance

Ca
bl
e
PD

E
by

Sa
m

Ya
te
s

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Arbor Introduction

• Zoom in to brain: TVB→ Nest→ Arbor

• Nest looks at really large networks of point-like neurons and simulates spikes

• Arbor includes now also the internal structure of neurons (neurons are multi-compartment)

• A simplified neuron sketch: Neuron is core, which connects through long axons to the
synapses, which are attached to dendrites, of other neurons

• With that a tree of cables is created, first seen by Hodgkin and Huxley

• Cables can be described as partial differential equations of capacitance and resistance

• Describing all cables and further structures leads to a sparse matrix, which has most entries
on the main band (but not all)

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Features of Arbor

Aim: Real-time, morphologically detailed, large-scale simulations
Optimized for modern HPC systems (parallelism, accelerators)
Easy to integrate, easy to extend
Collaboration of JSC, CSCS, BSC
Open Source Software, modern development methods
C++, CUDA, Intel Thread Building Blocks, HPX

→ https://github.com/eth-cscs/arbor

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 23 33

https://github.com/eth-cscs/arbor

Features of Arbor

Aim: Real-time, morphologically detailed, large-scale simulations
Optimized for modern HPC systems (parallelism, accelerators)
Easy to integrate, easy to extend
Collaboration of JSC, CSCS, BSC
Open Source Software, modern development methods
C++, CUDA, Intel Thread Building Blocks, HPX

→ https://github.com/eth-cscs/arbor

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Features of Arbor

• Other simulators have long history in development and grew historically;→ not a-priori
well-suited for HPC-like simulations (which are needed to eventually simulate the real brain)

• Arbor effort of JSC, CSCS, BSC to develop amodern simulator, which is built with HPC in mind
directly (Arbor was previously called NestMC)

• Open Source Sofware, developed on Github, Continuous Integration

• Many modern technologies

https://github.com/eth-cscs/arbor

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Architecture of Arbor

model
description
(NMODL &
recipes)

model
execution

loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

thread parallel
implementation

API API API

Modular: Substitute models with internal API
Modeling language: NMODL (Neuron)⇒ generate hardware-specific code
Communication: MPI (global), Intel TBB or C++11 Threads (local threads)
Backends: CUDA, AVX512, AVX2
GPU back-end available
— Hackathon project: Optimize sparse matrix computation on GPU
— Solution: Use padding→ 3× to 10× speedup

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 24 33

Architecture of Arbor

model
description
(NMODL &
recipes)

model
execution

loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

thread parallel
implementation

API API API

Modular: Substitute models with internal API
Modeling language: NMODL (Neuron)⇒ generate hardware-specific code
Communication: MPI (global), Intel TBB or C++11 Threads (local threads)
Backends: CUDA, AVX512, AVX2
GPU back-end available
— Hackathon project: Optimize sparse matrix computation on GPU
— Solution: Use padding→ 3× to 10× speedup20

17
-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Architecture of Arbor

• Adopts NEURONsmodeling language (NEURON: Another multi-compartment simulator, but
also not well-suited for parallel execution w/omodifications)

• Can target GPUs and Xeon Phi (KNLs)

• CPU sorts and packages data closely together, package potentially offloaded to accelerator,
solved, and back

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Current Status
Scaling highlight

1 2 4 8 16 32 64 128 256 512
1

4

16

64

256

174 s

211 s

5.1 s

2.2 s

176 s

204 s

Number of Nodes

W
al
lT
im

e
/s

gpu 18k
mc 18k
gpu 590k
mc 590k

Arbor strong scaling: Time to solution (CPU (Intel Broadwell), GPU (P100), both on Piz
Daint) for small and large model

Gr
ap

h
by

Be
n
Cu

m
m
in
g

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 25 33

http://www.cscs.ch/computers/piz_daint/index.html
http://www.cscs.ch/computers/piz_daint/index.html

Current Status
Scaling highlight

1 2 4 8 16 32 64 128 256 512
1

4

16

64

256

174 s

211 s

5.1 s

2.2 s

176 s

204 s

Number of Nodes

W
al
lT
im

e
/s

gpu 18k
mc 18k
gpu 590k
mc 590k

Arbor strong scaling: Time to solution (CPU (Intel Broadwell), GPU (P100), both on Piz
Daint) for small and large model

Gr
ap

h
by

Be
n
Cu

m
m
in
g

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Current Status

• Currently no JURON plots available, but same/similar tests have been run

• Plot on Piz Daint (which also has P100 GPUs)

• Still more potential within GPUs, actively developed

– Small model
• Low number of nodes is better for GPU, because then device can crunch a lot of data (which it is

good at)
• But speed-up eaten up by CPU, which needs to package the large data for the GPU
• For high number of nodes CPU is faster because the data packages are smaller and can be solved

by the CPU without any transfer overheads
– Large model: pretty much similar

http://www.cscs.ch/computers/piz_daint/index.html
http://www.cscs.ch/computers/piz_daint/index.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Current Status
Overview

Arbor shows good behavior in strong and
weak scaling
GPU acceleration: matrix solver (Hines
solver); state evolution
Specific optimizations available,
targeting hardware characteristics
Example reduce-by-key: Prevent race
conditions by warp-synchronous binary
reductions
JURON in use, no dedicated
measurements yet

1 10 100 1000

102

104

106

1.7×

2.4×
11.4×

Blue insets: atomics run time / reduce run time

Number of Synapses per Compartment

Ti
m
e
/m

s

CUDA atomics
reduce-by-key

Update time for 10 000 compartments as a
function of synapses per compartment

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 26 33

Current Status
Overview

Arbor shows good behavior in strong and
weak scaling
GPU acceleration: matrix solver (Hines
solver); state evolution
Specific optimizations available,
targeting hardware characteristics
Example reduce-by-key: Prevent race
conditions by warp-synchronous binary
reductions
JURON in use, no dedicated
measurements yet

1 10 100 1000

102

104

106

1.7×

2.4×
11.4×

Blue insets: atomics run time / reduce run time

Number of Synapses per Compartment

Ti
m
e
/m

s

CUDA atomics
reduce-by-key

Update time for 10 000 compartments as a
function of synapses per compartment20

17
-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Current Status

• Much effort in developing all the details
Example: Hines solver – A solver for mostly-band-matrices; very specific

• Example: Reduce-by-key – Instead of using mutexes to write to commonmemory location,
reduce-by-key uses warp-level binary reductions to increase memory efficiency

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Applications
PLI ICA

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 27 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

3D PLI ICA
PLI…

3D Polarized Light Imaging (PLI): Capture brain slices under polarized light
Capture at many angles (18, 0° to 170°)
Myelin around axons refracts light based on inclination to polarization plane

→ Resolve 3D structure of nerve fibers

Im
ag

es
by

Ax
er

et
al
.[
8]

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 28 33

3D PLI ICA
PLI…

3D Polarized Light Imaging (PLI): Capture brain slices under polarized light
Capture at many angles (18, 0° to 170°)
Myelin around axons refracts light based on inclination to polarization plane

→ Resolve 3D structure of nerve fibers

Im
ag

es
by

Ax
er

et
al
.[
8]

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

PLI ICA
3D PLI ICA

• Amount of transmitted light changes (sinusoidally) as function of angle between axon and
polarization plane of light; actually light is polarized with filters which change the polarization
plane

• Use information of refraction to measure brain in 3D (in slices)

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

3D PLI ICA
…ICA

Independent Component Analysis (ICA):
Separate complex signal into components;
mixture of sources→ individual
contributions
Signal-processing method, blind source
separation
Basis: Sinusoidal distribution of
measurement basis functions

→ Identify noise and artifacts in decomposition
for removal

Im
ag

e
by

Da
m
m
er
se

ta
l.
[9
]

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 29 33

3D PLI ICA
…ICA

Independent Component Analysis (ICA):
Separate complex signal into components;
mixture of sources→ individual
contributions
Signal-processing method, blind source
separation
Basis: Sinusoidal distribution of
measurement basis functions

→ Identify noise and artifacts in decomposition
for removal

Im
ag

e
by

Da
m
m
er
se

ta
l.
[9
]

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

PLI ICA
3D PLI ICA

• ICA: Method to decompose signal

• Measured signal is overlayedmixture of unknown and independent sources; mixture on
sources appear on all measurements (number of measurements needs to be greater than
number of sources)

• ICA decomposes mixture into individual sources

• Picture: different decomposition parts – signal (left) vs. noise (right)
Signal fits very well to a sinus function, noise not that well. Bottom: difference to sinus fit

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

ICA Challenges and Status

Computationally intensive analysis
→ distribute compute and I/O
Large data
750GB per slice, 325 TB per brain
Written in Python
Cython, numpy, scipy, mpi4py
Legacy code with many parts
GPU Hackathon:
— Extract compute intensive part to C
— Use OpenACC and CUDA for acceleration
— Prototype-like development

e.kurt = stats.kurtosis(np.dot(input_data,
weights).T, axis=1, fisher=True)↪→

↓

#pragma acc data copyin(input_v[0:n])
#pragma acc parallel loop reduction(+:mean)
for(unsigned int i=0; i < n; ++i)

mean += input_v[i]/n;
#pragma acc parallel loop copyin(mean)

reduction(+:variance)
reduction(+:kurtosis)

↪→
↪→
for(unsigned int i = 0; i < n; ++i) {

double tmp = input_v[i] - mean;
variance += (tmp*tmp);
kurtosis += pow(tmp,4);

}
kurtosis /= (variance*variance);
return (n*kurtosis-3.0);

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 30 33

ICA Challenges and Status

Computationally intensive analysis
→ distribute compute and I/O
Large data
750GB per slice, 325 TB per brain
Written in Python
Cython, numpy, scipy, mpi4py
Legacy code with many parts
GPU Hackathon:
— Extract compute intensive part to C
— Use OpenACC and CUDA for acceleration
— Prototype-like development

e.kurt = stats.kurtosis(np.dot(input_data,
weights).T, axis=1, fisher=True)↪→

↓

#pragma acc data copyin(input_v[0:n])
#pragma acc parallel loop reduction(+:mean)
for(unsigned int i=0; i < n; ++i)

mean += input_v[i]/n;
#pragma acc parallel loop copyin(mean)

reduction(+:variance)
reduction(+:kurtosis)

↪→
↪→
for(unsigned int i = 0; i < n; ++i) {

double tmp = input_v[i] - mean;
variance += (tmp*tmp);
kurtosis += pow(tmp,4);

}
kurtosis /= (variance*variance);
return (n*kurtosis-3.0);20

17
-1
1-
10

Brain Research Applications on Minsky
Applications

PLI ICA
ICA Challenges and Status

• ICA: Team I co-mentored at GPU hackathon

• Prototype-like development to port the Python application to GPU

• Decided not to use PyCUDA (or similar) but to write C implementations of kernels and add
wrappers

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

ICA Results of Porting

Hybrid Python, C, OpenACC, CUDA code
JURON faster than JURECA
— Data transfer: 10× (H2D), 6× (D2H)
— Compute: 7×
Still many parts of program CPU-only→ limited
possible speed-up, data transfer overheads
Benefit from Hackathon:
— Create Python interface
— Speak to experts on libraries
— Write CUDA prototype
— Formulate plan for future

Unfortunately, code is currently rolled back to
serial version to fix communication errors

ICA.py

externals.so

externals.o

PGI

py-cpp-interface.o

py-cpp-interface.cpp

py-cpp-interface.pyx

Cython

PGI

PGI

accelerated.o

kurtosis

GEMM

accelerated.cpp

PGI

PGI

OpenACC

cuBLAS

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 31 33

ICA Results of Porting

Hybrid Python, C, OpenACC, CUDA code
JURON faster than JURECA
— Data transfer: 10× (H2D), 6× (D2H)
— Compute: 7×
Still many parts of program CPU-only→ limited
possible speed-up, data transfer overheads
Benefit from Hackathon:
— Create Python interface
— Speak to experts on libraries
— Write CUDA prototype
— Formulate plan for future

Unfortunately, code is currently rolled back to
serial version to fix communication errors

ICA.py

externals.so

externals.o

PGI

py-cpp-interface.o

py-cpp-interface.cpp

py-cpp-interface.pyx

Cython

PGI

PGI

accelerated.o

kurtosis

GEMM

accelerated.cpp

PGI

PGI

OpenACC

cuBLAS

20
17

-1
1-
10

Brain Research Applications on Minsky
Applications

PLI ICA
ICA Results of Porting

• Eventually: Hybrid code with many programming languages and programmingmodels

• Test-run of C kernel on JURON and JURECA: JURON usually faster

• Still, many parts need to be ported to GPU to benefit from fewer memory copies

• Currently: Fixing MPI deadlock bugs in serial version

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Other HBP Applications on JURON

Only three applications highlighted (TVB-HPC, Arbor, PLI ICA)
Many applications more on JURON!
— 2D→ 3D image registration
— Multi-scale brain image stitching
— Pattern recognition

Huysegoms (2017)
M

em
be

r
of

th
e

H
el

m
ho

ltz
 A

ss
oc

ia
tio

n
8

Convolutional Neural Network (CNN)

Image pre-processing Network Mask reconstruction

10 October 2017 SimLab Neuroscience Steering Committee Meeting

Khalid (2017)

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 32 33

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions & Summary

Brain research exciting also for computational science
Minsky system JURON deployed as pilot supercomputer for Human Brain Project
System under intensive use (not only by HBP users)
TVB-HPC and Arbor: Two brain simulation applications operating on different scales
PLI ICA: Cleanup of scanned images
Many applications benefit from GPU (and also NVLink)

→ HBP helps to drive development of future supercomputing architecturesThank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 33 33

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Glossary
References

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 1 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Glossary & References

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 2 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 41

Arbor Multi-compartment simulation of neural networks, previously called
NestMC. 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 56, 57

BSC Barcelona Supercomputing Center, a Spanish supercomputing site. 12, 39

CINECA An Italian consortium of universities operating supercomputers. 12
CSCS The national supercomputing centre of Switzerland. 12, 39
CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA

C/C++. 19, 29, 31, 33, 39, 41, 52, 54, 60

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 3 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

DSL A Domain-Specific Language is a specialization of a more general language
to a specific domain. 31

EPFL École Polytechnique Fédérale de Lausanne, Switzerland. 12

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 12, 19, 39, 60

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 33, 34, 54
JURON One of the HBP pilot system in Jülich; name derived from Juelich and

Neuron. 19, 27, 28, 45, 54, 56, 57

KIT Karlsruhe Institute of Technology, Germany. 12

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 4 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

MPI The Message Passing Interface, a API definition for multi-node computing.
41

NVIDIA US technology company creating GPUs. 33, 34, 60
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPU

with 80GB/s. PCI-Express: 16 GB/s. 57, 60

OpenACC Directive-based programming, primarily for many-core machines. 52, 54
OpenCL The Open Computing Language. Framework for writing code for

heterogeneous architectures (CPU, GPU, DSP, FPGA). The alternative to
CUDA. 31

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as
its interconnect and has fast HBM2memory. 43

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 5 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary IV

Pascal GPU architecture from NVIDIA (announced 2016). 60

RWTH RWTH Aachen University, Germany. 12

Tesla The GPU product line for general purpose computing computing of NVIDIA.
33, 34

TVB-HPC High-Performance Computing sub-project of The Virtual Brain. 29, 30, 31,
32, 33, 34, 35, 56, 57

CPU Central Processing Unit. 33, 34, 43, 54, 60

GPU Graphics Processing Unit. 19, 20, 29, 33, 34, 41, 43, 45, 52, 57, 60

HBP Human Brain Project. 7, 8, 19, 56, 57, 60

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 6 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary V

ICA Independent Component Analysis. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57

PLI Polarized Light Imaging. 48, 49, 50, 51, 56, 57

TVB The Virtual Brain. 25, 26, 27, 28, 37, 60

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 7 10

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics I

[1] T. Willis. Cerebri anatome: cui accessit nervorum descriptio et usus. Typis Tho.
Roycroft, impensis Jo. Martyn & Ja. Allestry, 1664. URL:
https://archive.org/details/cerebrianatomecu00will (pages 3, 4).

[2] S. Ramón y Cajal. Estructura de los centros nerviosos de las aves. 1888. URL:
https://commons.wikimedia.org/wiki/File:SparrowTectum.jpg (page 3).

[4] H. Gray and W.H. Lewis. Anatomy of the Human Body. Lea & Febiger, 1918. URL:
http://www.bartleby.com/107/illus739.html (page 3).

[5] Richard Frackowiak and Henry Markram. “The future of human cerebral
cartography: a novel approach”. In: Phil. Trans. R. Soc. B 370.1668 (2015),
p. 20140171. DOI: 10.1098/rstb.2014.0171 (page 5).

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 8 10

https://archive.org/details/cerebrianatomecu00will
https://commons.wikimedia.org/wiki/File:SparrowTectum.jpg
http://www.bartleby.com/107/illus739.html
https://doi.org/10.1098/rstb.2014.0171

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Literature I

[3] A. L. Hodgkin, A. F. Huxley, and B. Katz. “Measurement of current-voltage relations
in the membrane of the giant axon ofLoligo”. In: The Journal of Physiology 116.4
(Apr. 1952), pp. 424–448. DOI: 10.1113/jphysiol.1952.sp004716. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392219/ (pages 3, 37).

[6] Paula Sanz Leon et al. “The Virtual Brain: a simulator of primate brain network
dynamics”. In: Frontiers in Neuroinformatics 7 (2013). DOI:
10.3389/fninf.2013.00010 (page 25).

[7] V.K. Jirsa et al. “The Virtual Epileptic Patient: Individualized whole-brain models of
epilepsy spread”. In: NeuroImage 145 (Jan. 2017), pp. 377–388. DOI:
10.1016/j.neuroimage.2016.04.049. URL:
http://www.sciencedirect.com/science/article/pii/S1053811916300891
(page 27).

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 9 10

https://doi.org/10.1113/jphysiol.1952.sp004716
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392219/
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1016/j.neuroimage.2016.04.049
http://www.sciencedirect.com/science/article/pii/S1053811916300891

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Literature II

[8] Markus Axer et al. “A novel approach to the human connectome: Ultra-high
resolution mapping of fiber tracts in the brain”. In: NeuroImage 54.2 (Jan. 2011),
pp. 1091–1101. DOI: 10.1016/j.neuroimage.2010.08.075. URL:
http://www.sciencedirect.com/science/article/pii/S105381191001178X
(page 48).

[9] Jürgen Dammers et al. “Automatic identification of gray and white matter
components in polarized light imaging”. In: NeuroImage 59.2 (Jan. 2012),
pp. 1338–1347. DOI: 10.1016/j.neuroimage.2011.08.030. URL:
http://www.sciencedirect.com/science/article/pii/S1053811911009232
(page 50).

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 10 10

https://doi.org/10.1016/j.neuroimage.2010.08.075
http://www.sciencedirect.com/science/article/pii/S105381191001178X
https://doi.org/10.1016/j.neuroimage.2011.08.030
http://www.sciencedirect.com/science/article/pii/S1053811911009232

	Brain Research
	History
	Today's Challenges
	Human Brain Project

	HBP Pilot Systems
	Motivation
	JURON
	Eurohack

	Applications
	TVB-HPC
	Arbor
	PLI ICA
	Others

	Appendix
	Glossary
	References

