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Brain Research
History
Today’s Challenges
Human Brain Project

HBP Pilot Systems
Motivation
JURON
Eurohack

Applications
TVB-HPC
Arbor
PLI ICA
Others

Forschungszentrum Jülich, Germany
Jülich Supercomputing Centre
POWER Acceleration and Design Centre
Strong connection to neuroscience (HPCNS)
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History of Brain Research
A long way down

1700 BC: Already Egyptians had some knowledge about brain
structure
17th c.: Neurology, status of brain: Thomas Willis (et al)
19th c.: Visualization, neuron doctrine: Golgi→ Ramón y Cajal
Late 19th c.: neuron electrically excitable
20th c.: Brodmann areas (1909); Hodgkin-Huxley model (1952);
neuroscience

Today: Brain still not fully decoded
— Brain atlases in high resolution
— Models to describe dynamic behavior
→ Large-scale efforts

Willis (1664)

Ramón y Cajal (1888)

Gray and Lewis (1918)
Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 3 33
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Brain Research

History
History of Brain Research

A long way towards understanding of features of the brain

• Egyptians: Drilling hole into skull to cure headaches; brain damage

• Willis: Detailed anatomy of the brain, Cerebri anatome: cui accessit nervorum descriptio et
ususwith detailed drawings; neurology

• Cajal uses method of staining brains developed by Golgi (silver chromate) to visualize fibres;
start of neural doctrine (=neurons are functional unit of brain)

• Late 19th century: Experiments find that the neuron is electrically excitable

• Brodmann defines areas to create atlas of responsibilities (still used today); Hodgkin-Huxly
developmodel to describe neurons as electrical circuits with help of giant squid (action
potential); neuroscience is done
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Today’s Brain Challenges
A high complexity

Many neurons: O(1011)
Many connections: O(104) synapses per
neuron
Multi-scale behavior
— Molecular level
— Cellular level
— Brain regions
— Whole system
Power efficiency
— Whole human brain: 30W
— Simulation: entire supercomputer to

model small region

Complex data collection
Frackowiak and Markram (2015)
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Today’s Challenges
Today’s Brain Challenges

• There are many neurons

• There are many connections between for neuron

→ There are manymany connections in total

• Different effects for different biological scales: zooming in reveals new features; just like in
physics

• Brain runs on amazingly low power footprint

• Data collection is very complex: (some) dynamic studies only with large apparatus; static, but
high-res studies only post-mortem, and even then is brain a complex 3D structure
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Human Brain Project
HBP as a flagship

1 Billion € (co-funded EC and national), 10 year endeavor, ∗2013
Future and Emerging Technologies flagship of European Commission (Horizon 2020)
12 sub-projects, covering multiple scales and technologies (SP7: HPC)
Specific Grant Agreement 1 (2016 - 2018): 114 participants
Goal: Build integrated ICT infrastructure to enable global collaborative effort towards
understanding human brain, ultimately emulate its computational capabilities

→ https://www.humanbrainproject.eu/
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Human Brain Project
Human Brain Project

To understand (decode) such a complex organ is an endeavor which needs
a large-scale effort→ EU Flagship Project

• Funding: 50% from EU, 50% from partners

• Sub-projects which focus on different kinds of efforts (mouse brains, theoretical,
neuromorphic computing, …, even robotics!)

• Current: Specific Grant Agreement 1

https://www.humanbrainproject.eu/
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HBP Pilot Systems

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 6 33
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HBP & Supercomputers

Measuring and simulating brain components: computational intensive!
→ High Performance Analytics and Computing Platform (HPAC)

Large-scale brain simulations: PFLOP/s, PB
→ Need capability of a supercomputer!
Special requirements
— Interactive, scalable visualization (in-situ)
— Large memory footprint of data (dense memory, fast interconnects)
— Dynamic resource management, interactive steering
— Various data sources (eventually: federated services)

→ Pre-Commercial Procurement of two systems: JULIA and JURON

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 7 33
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HBP Pilot Systems

Motivation
HBP & Supercomputers

• Already now, HBP needs many computing resource for all the simulations andmeasurements
→ HPAC

• But simulations will get more andmore sophisticated, so demand only increases

• With that large performance need: Special requirements to supercomputers identified

• PCP newway of EU to involve vendors into procurement



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HPAC Platform
High Performance Analytics and Computing

HPC and data infrastructure services
Currently: loosely coupled, not yet federated
Current components
— Supercomputers at BSC (MareNostrum 4), CINECA

(Pico,MARCONI), CSCS (Piz Daint), JSC (JUQUEEN,
JURECA, Pilots)

— Cloud services at KIT
— Visualization services at RWTH and EPFL

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 8 33
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HBP Pilot Systems

Motivation
HPAC Platform

• Largest European supercomputers bundled

• Eventually coupled together

• Currently on the way there, with individual parts finished (collaboratory, UNICORE)



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

HBP & Supercomputers

Measuring and simulating brain components: computational intensive!
→ High Performance Analytics and Computing Platform (HPAC)

Large-scale brain simulations: PFLOP/s, PB
→ Need capability of a supercomputer!
Special requirements
— Interactive, scalable visualization (in-situ)
— Large memory footprint of data (dense memory, fast interconnects)
— Dynamic resource management, interactive steering
— Various data sources (eventually: federated services)

→ Pre-Commercial Procurement of two systems: JULIA and JURON

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 9 33



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JULIA & JURON

JURONJULIA

JULIA & JURON: Human Brain Project Prototypes

JULIA
Cray (CS-Storm)
60 nodes, each 1
Intel Xeon Phi KNL
OmniPath network

JURON
IBM-NVIDIA (Minsky)
18 nodes, each 2 P8’,
4 P100, NVMe SSDs
InfiniBand EDR

Common local storage

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 10 33
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JURON
JULIA & JURON

• Two system: Intel-KNL-based JULIA and POWER8’-P100-based JURON

• Match requirements in their own ways

• Middle: A common storage cluster, attached to JURON and JULIA faster than Jülich’s global
file system GPFS

https://hbp-hpc-platform.fz-juelich.de/?page_id=1063
https://hbp-hpc-platform.fz-juelich.de/?page_id=1073
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System Configuration

juronc01

juronc02

juronc03

juronc04

juronc05
juronc06

juronc07
juronc08 juronc09 juronc10 juronc11

juronc12
juronc13

juronc14

juronc15

juronc16

juronc17

juronc18

juron1-adm
 









JURON = Juelich + Neuron
≈350 TFLOP/s peak (double)
Memory
Technology Capacity / TB Bandwidth / TB/s

HBM2 1.1 52
DDR4 4.5 4.1
NAND flash 28 0.05

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

80 GB/s

720 GB/s
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HBP Pilot Systems

JURON
System Configuration

• JURON’s 18 compute nodes, connected via Ethernet and InfiniBand to switch; login node
connected via Ethernet to switch

• Login node: access from outside and to Jülich storage resources (+ PCP storage system)

• Also: 4 visualization nodes with direct access from outside

• Capacity and bandwidth are combined values
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GPU Hackathon in Jülich
First HBP Applications on JURON

Eurohack: 1 week of application porting to GPU at JSC in March 2017
10 teams; 3 neuroscience

Arbor Optimizing GPU code of simulation (formerly NestMC)
TVB-HPC First port of back-end to CUDA

The PLI Guys Build CUDA back-end to Python simulation
— >1000 jobs launched, 2⁄3 on JURON
— Every team accelerated code and went homemotivated

→ Strong interest in GPU and JURON

# 12 33

https://blogs.fz-juelich.de/zweikommazwei/en/2017/03/16/gpu-hackathon-at-juelich-supercomputing-centre
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Eurohack
GPU Hackathon in Jülich

• GPU Hackathon (Eurohack) in Jülich; one of the events organized with ORNL all over the world

• Intense work atmosphere, very productive

• Three applications from neuroscience, in the following presented as examples

https://blogs.fz-juelich.de/zweikommazwei/en/2017/03/16/gpu-hackathon-at-juelich-supercomputing-centre
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Applications
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Diverse Set of Applications
Many scales, many steps

Simulation
— Regions: The Virtual Brain
— Neural networks: Nest
— Neurons with compartments: Arbor, Neuron
Measurement
— Coupling of data
— Electrophysiology
Post-processing
— Post-processing of scanned data
— Automated stitching
— Matching of images taken with different methods
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Convolutional Neural Network (CNN)

Image pre-processing Network Mask reconstruction

10 October 2017 SimLab Neuroscience Steering Committee Meeting

Khalid (2017)

Axer (2017)
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Applications

Diverse Set of Applications

• Jülich specializes in tools for simulation and post-processing of scanned data

• Strong connection with Supercomputing Centre, specialized interface division: High
Performance Computing in Neuro Science (HPCNS) + Simulation Lab Neuro Science (SLNS)

• There’s muchmore to it – 12 sub-projects of HBP
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Applications
TVB-HPC

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 15 33
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The Virtual Brain

Framework for simulation of brain dynamics on large scale [6]
— Biologically realistic connectivity matrix (connectome)
— Neural mass models, sparse matrix linear solution (60 - 1000

elements), several free parameters
— Models built on top of clinical data (fMRI, …)
— Goal: Help patients with neurological disorders, compare brain
Current software stack
— Python simulation core, expendable by Matlab scripts
— Web-based visual control center
— Domain-Specific Language to describe brain models (IDLE)

→ http://www.thevirtualbrain.org/tvb/

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 16 33
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TVB-HPC
The Virtual Brain

• TVB: software infrastructure to simulate individual brains as models

• Match with measurements; structural vs. functional data

• Eventual goal: simulate a patient’s brain in software and guide cure for illness

• Basically written in Python with interfaces to individual Matlab scripts for extension

• View the virtual brain at a web-based applications

• DSL for description of brain models

• Pictures

1. Logo TVB
2. Flow of typical brain simulation; input are fibre structures (up, connectome, visualized for

example with Diffusion Tensor Imaging) and regions of brain
3. Connectome close-up

http://www.thevirtualbrain.org/tvb/
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Example TVB Science on JURON

Recently run: Monte Carlo model inference for clinical epilepsy models
Pictures from “The Virtual Epileptic Patient: Individualized whole-brain models of
epilepsy spread” [7]
Currently single-threaded application; no performance gain yet
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TVB-HPC
Example TVB Science on JURON

• Also TVB currently runs on JURON

• Example epileptic simulation
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TVB-HPC

Traditional approach: Serial computation of models
TVB-HPC: Fast, parallel back-end (parallel in parameters)
At GPU hackathon:
— Optimize specific mass, coupling, post-processing models
— Study data access issues
— Learn advanced GPU techniques
→ 20× speedup

JURON: CUDA code for Kuramotomodel as proof-of-concept
Since then: Automated code generation

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 18 33
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TVB-HPC
TVB-HPC

• TVB: Serial simulation of single brain model

• TVB-HPC: Optimized, HPC-targeted simulation of multiple versions of model by simulating
many parameters of model at once in parallel

– First (and at Hackathon): One single model ported to CUDA – very good results
– Now: Focus on automated code generated
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Code Generation in TVB-HPC
Targeting different accelerators

Automatic code generation

Neural Mass
Model kernel

Coupling 
kernel

Post-Processing
kernel

Integration
kernel state

connection 
weights

diffs

drift
input output

 

E I

J

Background Noise
 Input from 

other regions

Serial loop over time steps
osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)

class Kuramoto(BaseModel):
    state = 'theta'
    limit = (0, 2 * np.pi),
    input = 'I'
    param = 'omega'
    drift = 'omega + I',
    

class Kuramoto(Diff):
    pre_sum = 'sin(
                pre_syn - post_syn)',
    post_sum = 
                'g_coupling * mean', 

def euler(x, f, dt=None):
    dt = dt or pm.var('dt')
    return x + dt * f

class BalloonWindkessel(BaseModel):
    state = 's f v q'
    drift = (
        'x - RT_S * s - RT_F * (f - 1)', 's',
        'RT_O * (f - v**RECIP_ALPHA)',
        'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
        ' - v**RECIP_ALPHA * (q / v))'
    ) ...

Parallel over parameter sets
knl = lp.to_batched(knl, subject, [a, delays], 
i_subject, sequential=False)
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Motivation

Performance results

High performance computing is becoming every day a more accessible 
and desirable concept for researchers in neuroscience.
We want to design code to utilize the full power of supercomputers, GPUs 
and other computational accelerators in a dynamic, maintainable, scalable 
and robust fashion.
Optimize the workflows and models currently available in The Virtual Brain 
software (Sanz Leon et al. 2013). 

Automatically generating HPC-optimized code for
simulations using neural mass models

Marmaduke Woodman , Sandra Diaz-Pier , Alexander Peyser1 2 2

1. Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2. Simulation Laboratory Neuroscience -- Bernstein Facility for Simulation and Database Technology. 

Institute for Advanced Simulation, Jülich Forschungszentrum, Jülich, Germany

Describe your neural mass model with a high level language.
Combine it with an integration kernel and a coupling kernel to build a 
network workflow.
Define a post-processing kernel.
Use our framework based on Loo.py (Kloeckner 2014) to easily create a 
loop over time and a parallel computation kernel over parameter sets.

Same high level code, multiple target platforms!

 

Our approach

 

Numba
Easy integration to python code
Optimized routines and runs on any CPU. JIT 
generation of LLVM code.
Flexibility to move into the CUDA version of numba, 
which allows seamless GPU usage from python. 

OpenCL

Benefit from different OpenCL platforms like GPUs, 
CPUs and FPGAs.
High flexibility, clear code which can be easily ported.

CUDA

High performance utilizing the computational 
capabilities of GPUs.
Enables large parallel parameter searches in short 
time. 

 

Discussion

Run on different architectures and accelerators like GPUs without changing 
the top level description of the kernels.
Flexible parallelization using Loo.py.
Hidden complexity to the user, big computational power underneath.
Great performance boost on GPUs.

Want to get involved in the development?
Take a look at our code: 

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated 
code for a test kernel 

from __future__ import division, print_function

import numpy as _lpy_np
import numba as _lpy_numba

@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec, 
out):
    for i in range(0, -1 + n + 1):
        jhi = row[i + 1]
        jlo = row[i]
        for k in range(0, -1 + n + 1):
            acc_j = 0
            for j in range(jlo, -1 + jhi + 1):
                acc_j = acc_j + dat[j]*vec[col[j]]
            out[i] = k*acc_j

@ncu.jit
def loopy_kernel_inner(
    n, nnz, row, col, dat, vec, out):
    if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
        acc_j = 0
        jhi = row[1 + tIdx.x + bIdx.x*512]
        jlo = row[tIdx.x + bIdx.x*512]
        for j in range(jlo, -1 + jhi + 1):
            acc_j = acc_j + dat[j]*vec[col[j]]
        out[tIdx.x + bIdx.x*512] = 
            (tIdx.y + bIdx.y*512)*acc_j

def loopy_kernel(
    n, nnz, row, col, dat, vec, out):
    loopy_kernel_inner[((511 + n) // 512,
                                   (511 + n) // 512),
                                   (512, 512)]
                  (n, nnz, row, col, dat, vec, out)

Numba + CUDA Numba

Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition) 
of the Jülich Supercomputing Centre with a test kernel. 

Numba Cuda speedup against Numba 
for different load and #of threads

Execution times for different 
targets and loads

Scales linearly: 
10x bigger computer = 10x more data processed in the same time!
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Code Generation in TVB-HPC
Targeting different accelerators

Automatic code generation

Neural Mass
Model kernel

Coupling 
kernel

Post-Processing
kernel

Integration
kernel state

connection 
weights

diffs

drift
input output

 

E I

J

Background Noise
 Input from 

other regions

Serial loop over time steps
osc = model.Kuramoto()
osc.dt = 1.0
osc.const['omega'] = 10.0 * 2.0 * np.pi / 1e3
cfun = coupling.Kuramoto(osc)
scm = scheme.EulerStep(osc.dt)
knl = transforms.network_time_step(osc, cfun, scm)

class Kuramoto(BaseModel):
    state = 'theta'
    limit = (0, 2 * np.pi),
    input = 'I'
    param = 'omega'
    drift = 'omega + I',
    

class Kuramoto(Diff):
    pre_sum = 'sin(
                pre_syn - post_syn)',
    post_sum = 
                'g_coupling * mean', 

def euler(x, f, dt=None):
    dt = dt or pm.var('dt')
    return x + dt * f

class BalloonWindkessel(BaseModel):
    state = 's f v q'
    drift = (
        'x - RT_S * s - RT_F * (f - 1)', 's',
        'RT_O * (f - v**RECIP_ALPHA)',
        'RT_O * (f * (1 - (1 - E0)**(1 / f)) * R0'
        ' - v**RECIP_ALPHA * (q / v))'
    ) ...

Parallel over parameter sets
knl = lp.to_batched(knl, subject, [a, delays], 
i_subject, sequential=False)

 

Acknowledgments
We would like to thank our collaborators Lia Domide, Mihai Andrei, Vlad Prunar, Petra Ritter, 
Michael Schirner and Olaf Sporns. The authors would also like to acknowledge the support by the 
Excellence Initiative of the German federal and state governments, the JARA and CRCNS grant and 
the Helmholtz Association through the portfolio theme SMHB and the Initiative and Networking 
Fund. In addition, this project has received funding from the European Union's Horizon 2020 
research and innovation program under grant agreement No 720270 (HBP SGA1).

Motivation

Performance results

High performance computing is becoming every day a more accessible 
and desirable concept for researchers in neuroscience.
We want to design code to utilize the full power of supercomputers, GPUs 
and other computational accelerators in a dynamic, maintainable, scalable 
and robust fashion.
Optimize the workflows and models currently available in The Virtual Brain 
software (Sanz Leon et al. 2013). 

Automatically generating HPC-optimized code for
simulations using neural mass models

Marmaduke Woodman , Sandra Diaz-Pier , Alexander Peyser1 2 2

1. Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2. Simulation Laboratory Neuroscience -- Bernstein Facility for Simulation and Database Technology. 

Institute for Advanced Simulation, Jülich Forschungszentrum, Jülich, Germany

Describe your neural mass model with a high level language.
Combine it with an integration kernel and a coupling kernel to build a 
network workflow.
Define a post-processing kernel.
Use our framework based on Loo.py (Kloeckner 2014) to easily create a 
loop over time and a parallel computation kernel over parameter sets.

Same high level code, multiple target platforms!

 

Our approach

 

Numba
Easy integration to python code
Optimized routines and runs on any CPU. JIT 
generation of LLVM code.
Flexibility to move into the CUDA version of numba, 
which allows seamless GPU usage from python. 

OpenCL

Benefit from different OpenCL platforms like GPUs, 
CPUs and FPGAs.
High flexibility, clear code which can be easily ported.

CUDA

High performance utilizing the computational 
capabilities of GPUs.
Enables large parallel parameter searches in short 
time. 

 

Discussion

Run on different architectures and accelerators like GPUs without changing 
the top level description of the kernels.
Flexible parallelization using Loo.py.
Hidden complexity to the user, big computational power underneath.
Great performance boost on GPUs.

Want to get involved in the development?
Take a look at our code: 

https://github.com/the-virtual-brain/tvb-hpc

Example of automatically generated 
code for a test kernel 

from __future__ import division, print_function

import numpy as _lpy_np
import numba as _lpy_numba

@_lpy_numba.jit
def loopy_kernel(n, nnz, row, col, dat, vec, 
out):
    for i in range(0, -1 + n + 1):
        jhi = row[i + 1]
        jlo = row[i]
        for k in range(0, -1 + n + 1):
            acc_j = 0
            for j in range(jlo, -1 + jhi + 1):
                acc_j = acc_j + dat[j]*vec[col[j]]
            out[i] = k*acc_j

@ncu.jit
def loopy_kernel_inner(
    n, nnz, row, col, dat, vec, out):
    if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 
and -1 + -512*bIdx.x + -1*tIdx.x + n >= 0:
        acc_j = 0
        jhi = row[1 + tIdx.x + bIdx.x*512]
        jlo = row[tIdx.x + bIdx.x*512]
        for j in range(jlo, -1 + jhi + 1):
            acc_j = acc_j + dat[j]*vec[col[j]]
        out[tIdx.x + bIdx.x*512] = 
            (tIdx.y + bIdx.y*512)*acc_j

def loopy_kernel(
    n, nnz, row, col, dat, vec, out):
    loopy_kernel_inner[((511 + n) // 512,
                                   (511 + n) // 512),
                                   (512, 512)]
                  (n, nnz, row, col, dat, vec, out)

Numba + CUDA Numba

Numba CUDA, Numba and OpenCL runs performed on the Jureca cluster (GPU partition) 
of the Jülich Supercomputing Centre with a test kernel. 

Numba Cuda speedup against Numba 
for different load and #of threads

Execution times for different 
targets and loads

Scales linearly: 
10x bigger computer = 10x more data processed in the same time!
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Applications

TVB-HPC
Code Generation in TVB-HPC

• User writes models in DSL

• Models aremost of the time neural massmodels, but also coupling and integration kernels (or
select one pre-existing for the latter)

• From DSL, loo.py is used to generate to-be-accelerated code

https://github.com/inducer/loopy
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Code Generation in TVB-HPC
Results on JURECA

Test kernel execution time (y/ms) for different targets Test kernel execution time speedup Numba+CUDA vs.
Numba (y) for different number of threads (x)

S.
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JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
Numba: Decorator-based auto-acceleration for Python (JIT compilation with @jit);
different targets

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 20 33
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Code Generation in TVB-HPC
Results on JURECA

Generated CPU-targeted code
@_lpy_numba.jit
def loopy_krnl(n, nnz, row, col, dat, vec, out):

for i in range(0, -1 + n + 1):
jhi = row[i + 1]
jlo = row[i]
for k in range(0, -1 + n + 1):

acc_j = 0
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[i] = k*acc_j

Generated GPU-targeted code
@ncu.jit
def loopy_krnl_in(n, nnz, row, col, dat, vec, out):

if -1 + -512*bIdx.y + -1*tIdx.y + n >= 0 and -1
+ -512*bIdx.x + -1*tIdx.x + n >= 0:↪→

acc_j = 0
jhi = row[1 + tIdx.x + bIdx.x*512]
jlo = row[tIdx.x + bIdx.x*512]
for j in range(jlo, -1 + jhi + 1):

acc_j = acc_j + dat[j]*vec[col[j]]
out[tIdx.x + bIdx.x*512] = (tIdx.y +

bIdx.y*512)*acc_j↪→

S.
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JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
Numba: Decorator-based auto-acceleration for Python (JIT compilation with @jit);
different targets
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JURECA node: 2 Intel Haswell CPUs (12 cores), 2 NVIDIA Tesla K80 GPUs
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different targets20
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TVB-HPC
Code Generation in TVB-HPC

• Current studies with loo.py generation on JURECA, but code runs also on JURON

• Up to 16-fold speed-up for Numba+CUDA vs Numba

• In Numba+CUDA, Numba generates CUDA code in run-time; also here loop.py provides the
raw code, which is more targeted towards CUDA already

https://numba.pydata.org/
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Applications
Arbor
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Arbor Introduction

TVB: Large scale; effective models; dynamics
Nest: Biologically correct; point-like neurons; large, spiking networks
Arbor: Neurons with internal structure, multi-compartment

— Hodgkin-Huxley model: network of neurons as circuit [3]

— Neuron: axonic delay, synaptic functions, tree of cables
connecting to body

— Cables: electrical compartments (resistance, capacitance)

∂

∂x

(
σ
∂v

∂x

)
=

cm
∂v

∂t
+ rm(v − erev) +

∑
channels k

gk(v, t)(v − erevk )

 ·
∂S
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+
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synapses k
Isynk (v, t)δxk +

∑
injections k

Iinjk (t)δxk

→ Neuron is (band) matrix based on known conductance
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Arbor
Arbor Introduction

• Zoom in to brain: TVB→ Nest→ Arbor

• Nest looks at really large networks of point-like neurons and simulates spikes

• Arbor includes now also the internal structure of neurons (neurons are multi-compartment)

• A simplified neuron sketch: Neuron is core, which connects through long axons to the
synapses, which are attached to dendrites, of other neurons

• With that a tree of cables is created, first seen by Hodgkin and Huxley

• Cables can be described as partial differential equations of capacitance and resistance

• Describing all cables and further structures leads to a sparse matrix, which has most entries
on the main band (but not all)
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Features of Arbor

Aim: Real-time, morphologically detailed, large-scale simulations
Optimized for modern HPC systems (parallelism, accelerators)
Easy to integrate, easy to extend
Collaboration of JSC, CSCS, BSC
Open Source Software, modern development methods
C++, CUDA, Intel Thread Building Blocks, HPX

→ https://github.com/eth-cscs/arbor
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Arbor
Features of Arbor

• Other simulators have long history in development and grew historically;→ not a-priori
well-suited for HPC-like simulations (which are needed to eventually simulate the real brain)

• Arbor effort of JSC, CSCS, BSC to develop amodern simulator, which is built with HPC in mind
directly (Arbor was previously called NestMC)

• Open Source Sofware, developed on Github, Continuous Integration

• Many modern technologies

https://github.com/eth-cscs/arbor


M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Architecture of Arbor

model
description
(NMODL &
recipes)

model
execution

loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

thread parallel
implementation

API API API

Modular: Substitute models with internal API
Modeling language: NMODL (Neuron)⇒ generate hardware-specific code
Communication: MPI (global), Intel TBB or C++11 Threads (local threads)
Backends: CUDA, AVX512, AVX2
GPU back-end available
— Hackathon project: Optimize sparse matrix computation on GPU
— Solution: Use padding→ 3× to 10× speedup

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 24 33



Architecture of Arbor

model
description
(NMODL &
recipes)

model
execution

loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

thread parallel
implementation

API API API

Modular: Substitute models with internal API
Modeling language: NMODL (Neuron)⇒ generate hardware-specific code
Communication: MPI (global), Intel TBB or C++11 Threads (local threads)
Backends: CUDA, AVX512, AVX2
GPU back-end available
— Hackathon project: Optimize sparse matrix computation on GPU
— Solution: Use padding→ 3× to 10× speedup20

17
-1
1-
10

Brain Research Applications on Minsky
Applications

Arbor
Architecture of Arbor

• Adopts NEURONsmodeling language (NEURON: Another multi-compartment simulator, but
also not well-suited for parallel execution w/omodifications)

• Can target GPUs and Xeon Phi (KNLs)

• CPU sorts and packages data closely together, package potentially offloaded to accelerator,
solved, and back
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Current Status
Scaling highlight

1 2 4 8 16 32 64 128 256 512
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Arbor strong scaling: Time to solution (CPU (Intel Broadwell), GPU (P100), both on Piz
Daint) for small and large model
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Arbor
Current Status

• Currently no JURON plots available, but same/similar tests have been run

• Plot on Piz Daint (which also has P100 GPUs)

• Still more potential within GPUs, actively developed

– Small model
• Low number of nodes is better for GPU, because then device can crunch a lot of data (which it is

good at)
• But speed-up eaten up by CPU, which needs to package the large data for the GPU
• For high number of nodes CPU is faster because the data packages are smaller and can be solved

by the CPU without any transfer overheads
– Large model: pretty much similar

http://www.cscs.ch/computers/piz_daint/index.html
http://www.cscs.ch/computers/piz_daint/index.html
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Current Status
Overview

Arbor shows good behavior in strong and
weak scaling
GPU acceleration: matrix solver (Hines
solver); state evolution
Specific optimizations available,
targeting hardware characteristics
Example reduce-by-key: Prevent race
conditions by warp-synchronous binary
reductions
JURON in use, no dedicated
measurements yet

1 10 100 1000

102

104

106

1.7×

2.4×
11.4×

Blue insets: atomics run time / reduce run time

Number of Synapses per Compartment

Ti
m
e
/m

s

CUDA atomics
reduce-by-key

Update time for 10 000 compartments as a
function of synapses per compartment
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Arbor
Current Status

• Much effort in developing all the details
Example: Hines solver – A solver for mostly-band-matrices; very specific

• Example: Reduce-by-key – Instead of using mutexes to write to commonmemory location,
reduce-by-key uses warp-level binary reductions to increase memory efficiency
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Applications
PLI ICA
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3D PLI ICA
PLI…

3D Polarized Light Imaging (PLI): Capture brain slices under polarized light
Capture at many angles (18, 0° to 170°)
Myelin around axons refracts light based on inclination to polarization plane

→ Resolve 3D structure of nerve fibers

Im
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8]
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PLI ICA
3D PLI ICA

• Amount of transmitted light changes (sinusoidally) as function of angle between axon and
polarization plane of light; actually light is polarized with filters which change the polarization
plane

• Use information of refraction to measure brain in 3D (in slices)
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3D PLI ICA
…ICA

Independent Component Analysis (ICA):
Separate complex signal into components;
mixture of sources→ individual
contributions
Signal-processing method, blind source
separation
Basis: Sinusoidal distribution of
measurement basis functions

→ Identify noise and artifacts in decomposition
for removal
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PLI ICA
3D PLI ICA

• ICA: Method to decompose signal

• Measured signal is overlayedmixture of unknown and independent sources; mixture on
sources appear on all measurements (number of measurements needs to be greater than
number of sources)

• ICA decomposes mixture into individual sources

• Picture: different decomposition parts – signal (left) vs. noise (right)
Signal fits very well to a sinus function, noise not that well. Bottom: difference to sinus fit
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ICA Challenges and Status

Computationally intensive analysis
→ distribute compute and I/O
Large data
750GB per slice, 325 TB per brain
Written in Python
Cython, numpy, scipy, mpi4py
Legacy code with many parts
GPU Hackathon:
— Extract compute intensive part to C
— Use OpenACC and CUDA for acceleration
— Prototype-like development

e.kurt = stats.kurtosis(np.dot(input_data,
weights).T, axis=1, fisher=True)↪→

↓

#pragma acc data copyin(input_v[0:n])
#pragma acc parallel loop reduction(+:mean)
for(unsigned int i=0; i < n; ++i)

mean += input_v[i]/n;
#pragma acc parallel loop copyin(mean)

reduction(+:variance)
reduction(+:kurtosis)

↪→
↪→
for(unsigned int i = 0; i < n; ++i) {

double tmp = input_v[i] - mean;
variance += (tmp*tmp);
kurtosis += pow(tmp,4);

}
kurtosis /= (variance*variance);
return (n*kurtosis-3.0);

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 30 33



ICA Challenges and Status

Computationally intensive analysis
→ distribute compute and I/O
Large data
750GB per slice, 325 TB per brain
Written in Python
Cython, numpy, scipy, mpi4py
Legacy code with many parts
GPU Hackathon:
— Extract compute intensive part to C
— Use OpenACC and CUDA for acceleration
— Prototype-like development

e.kurt = stats.kurtosis(np.dot(input_data,
weights).T, axis=1, fisher=True)↪→

↓

#pragma acc data copyin(input_v[0:n])
#pragma acc parallel loop reduction(+:mean)
for(unsigned int i=0; i < n; ++i)

mean += input_v[i]/n;
#pragma acc parallel loop copyin(mean)

reduction(+:variance)
reduction(+:kurtosis)

↪→
↪→
for(unsigned int i = 0; i < n; ++i) {

double tmp = input_v[i] - mean;
variance += (tmp*tmp);
kurtosis += pow(tmp,4);

}
kurtosis /= (variance*variance);
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PLI ICA
ICA Challenges and Status

• ICA: Team I co-mentored at GPU hackathon

• Prototype-like development to port the Python application to GPU

• Decided not to use PyCUDA (or similar) but to write C implementations of kernels and add
wrappers
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ICA Results of Porting

Hybrid Python, C, OpenACC, CUDA code
JURON faster than JURECA
— Data transfer: 10× (H2D), 6× (D2H)
— Compute: 7×
Still many parts of program CPU-only→ limited
possible speed-up, data transfer overheads
Benefit from Hackathon:
— Create Python interface
— Speak to experts on libraries
— Write CUDA prototype
— Formulate plan for future

Unfortunately, code is currently rolled back to
serial version to fix communication errors

ICA.py

externals.so

externals.o

PGI

py-cpp-interface.o

py-cpp-interface.cpp

py-cpp-interface.pyx

Cython

PGI

PGI

accelerated.o

kurtosis

GEMM

accelerated.cpp

PGI

PGI

OpenACC

cuBLAS

Andreas Herten | Brain Research Applications on Minsky | 10 November 2017 # 31 33



ICA Results of Porting

Hybrid Python, C, OpenACC, CUDA code
JURON faster than JURECA
— Data transfer: 10× (H2D), 6× (D2H)
— Compute: 7×
Still many parts of program CPU-only→ limited
possible speed-up, data transfer overheads
Benefit from Hackathon:
— Create Python interface
— Speak to experts on libraries
— Write CUDA prototype
— Formulate plan for future

Unfortunately, code is currently rolled back to
serial version to fix communication errors

ICA.py

externals.so

externals.o

PGI

py-cpp-interface.o

py-cpp-interface.cpp

py-cpp-interface.pyx

Cython

PGI

PGI

accelerated.o

kurtosis

GEMM

accelerated.cpp

PGI

PGI

OpenACC

cuBLAS

20
17

-1
1-
10
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Applications

PLI ICA
ICA Results of Porting

• Eventually: Hybrid code with many programming languages and programmingmodels

• Test-run of C kernel on JURON and JURECA: JURON usually faster

• Still, many parts need to be ported to GPU to benefit from fewer memory copies

• Currently: Fixing MPI deadlock bugs in serial version
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Other HBP Applications on JURON

Only three applications highlighted (TVB-HPC, Arbor, PLI ICA)
Many applications more on JURON!
— 2D→ 3D image registration
— Multi-scale brain image stitching
— Pattern recognition

Huysegoms (2017)
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Convolutional Neural Network (CNN)

Image pre-processing Network Mask reconstruction

10 October 2017 SimLab Neuroscience Steering Committee Meeting

Khalid (2017)
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Conclusions & Summary

Brain research exciting also for computational science
Minsky system JURON deployed as pilot supercomputer for Human Brain Project
System under intensive use (not only by HBP users)
TVB-HPC and Arbor: Two brain simulation applications operating on different scales
PLI ICA: Cleanup of scanned images
Many applications benefit from GPU (and also NVLink)

→ HBP helps to drive development of future supercomputing architecturesThank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix
Glossary & References
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Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 41

Arbor Multi-compartment simulation of neural networks, previously called
NestMC. 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 56, 57

BSC Barcelona Supercomputing Center, a Spanish supercomputing site. 12, 39

CINECA An Italian consortium of universities operating supercomputers. 12
CSCS The national supercomputing centre of Switzerland. 12, 39
CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA

C/C++. 19, 29, 31, 33, 39, 41, 52, 54, 60
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Glossary II

DSL A Domain-Specific Language is a specialization of a more general language
to a specific domain. 31

EPFL École Polytechnique Fédérale de Lausanne, Switzerland. 12

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 12, 19, 39, 60

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 33, 34, 54
JURON One of the HBP pilot system in Jülich; name derived from Juelich and

Neuron. 19, 27, 28, 45, 54, 56, 57

KIT Karlsruhe Institute of Technology, Germany. 12
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Glossary III

MPI The Message Passing Interface, a API definition for multi-node computing.
41

NVIDIA US technology company creating GPUs. 33, 34, 60
NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPU

with 80GB/s. PCI-Express: 16 GB/s. 57, 60

OpenACC Directive-based programming, primarily for many-core machines. 52, 54
OpenCL The Open Computing Language. Framework for writing code for

heterogeneous architectures (CPU, GPU, DSP, FPGA). The alternative to
CUDA. 31

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as
its interconnect and has fast HBM2memory. 43
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Glossary IV

Pascal GPU architecture from NVIDIA (announced 2016). 60

RWTH RWTH Aachen University, Germany. 12

Tesla The GPU product line for general purpose computing computing of NVIDIA.
33, 34

TVB-HPC High-Performance Computing sub-project of The Virtual Brain. 29, 30, 31,
32, 33, 34, 35, 56, 57

CPU Central Processing Unit. 33, 34, 43, 54, 60

GPU Graphics Processing Unit. 19, 20, 29, 33, 34, 41, 43, 45, 52, 57, 60

HBP Human Brain Project. 7, 8, 19, 56, 57, 60
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Glossary V

ICA Independent Component Analysis. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57

PLI Polarized Light Imaging. 48, 49, 50, 51, 56, 57

TVB The Virtual Brain. 25, 26, 27, 28, 37, 60
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