
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters and Tools
OpenPOWER Tutorial, SC17, Denver

Andreas Herten, Forschungszentrum Jülich, 13 November 2017

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Outline

Goals of this session
Get to know Performance Counters
Measure counters on POWER8

→ Hands-on
Additional material in appendix

Motivation
Performance Counters

Introduction
General Description

Counters on POWER8
Measuring Counters

perf
PAPI
GPUs

Conclusion

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 2 19

Knuth

[…] premature optimization is the root of all evil.

Yetwe should not pass up our [optimization] op-
portunities […]

– Donald Knuth

Knuth

[…] premature optimization is the root of all evil.
Yetwe should not pass up our [optimization] op-
portunities […]
– Donald Knuth

Full quote in appendix

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Optimization Measurement
Making educated decisions

Only optimize code aftermeasuring its performance
Measure! Don’t trust your gut!

Objectives
— Run time
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features ($, (S)MT, SIMD,…)
Correlate measurements with code
→ hot spots/performance limiters
Iterative process

Programming Measuring

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 4 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Optimization Measurement
Making educated decisions

Only optimize code aftermeasuring its performance
Measure! Don’t trust your gut!
Objectives
— Run time
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features ($, (S)MT, SIMD,…)

Correlate measurements with code
→ hot spots/performance limiters
Iterative process

Programming Measuring

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 4 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Optimization Measurement
Making educated decisions

Only optimize code aftermeasuring its performance
Measure! Don’t trust your gut!
Objectives
— Run time
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features ($, (S)MT, SIMD,…)
Correlate measurements with code
→ hot spots/performance limiters

Iterative process

Programming Measuring

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 4 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Optimization Measurement
Making educated decisions

Only optimize code aftermeasuring its performance
Measure! Don’t trust your gut!
Objectives
— Run time
— Cycles
— Operations per cycle (FLOP/s)
— Usage of architecture features ($, (S)MT, SIMD,…)
Correlate measurements with code
→ hot spots/performance limiters
Iterative process

Programming Measuring

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 4 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measurement

Two options for insight
Coarse Timestamps to time program / parts of program

Only good for first glimpse
No insight to inner workings

Detailed Performance counters to study usage of hardware architecture

Instructions
Cycles
Floating point operations
Stalled cycles
Cache misses, cache hits
Prefetches

Flushs
Branches
CPUmigrations
…

CPI, IPC

Native
Derived
Software

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 5 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measurement

Two options for insight
Coarse Timestamps to time program / parts of program

Only good for first glimpse
No insight to inner workings

Detailed Performance counters to study usage of hardware architecture

Instructions
Cycles
Floating point operations
Stalled cycles
Cache misses, cache hits
Prefetches

Flushs
Branches
CPUmigrations
…

CPI, IPC

Native
Derived
Software

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 5 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 6 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Monitoring Unit
Right next to the core

Part of processor periphery, but dedicated registers
History
— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [1]
— Originally for chip developers
— Later embraced for software developers and tuners

Operation: Certain events counted at logic level, then aggregated to registers

Pros

Low overhead
Very specific requests possible; detailed
information
Information about CPU core, nest, cache,
memory

Cons

Processor-specific
Hard to measure
Limited amount of counter registers
Compressed information content

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 7 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Monitoring Unit
Right next to the core

Part of processor periphery, but dedicated registers
History
— First occurrence: Intel Pentium, reverse-engineered 1994 (RDPMC) [1]
— Originally for chip developers
— Later embraced for software developers and tuners

Operation: Certain events counted at logic level, then aggregated to registers

Pros

Low overhead
Very specific requests possible; detailed
information
Information about CPU core, nest, cache,
memory

Cons

Processor-specific
Hard to measure
Limited amount of counter registers
Compressed information content

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 7 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Working with Performance Counters
Some caveats

Mind the clock rates!
— Modern processors have dynamic clock rates (CPUs, GPUs)

→Might skew results
— Some counters might not run at nominal clock rate

Limited counter registers
POWER8: 6 slots for hardware counters
Cores, Threads (OpenMP)
— Absolutely possible
— Complicates things slightly
— Pinning necessary

→ OMP_PROC_BIND, OMP_PLACES; PAPI_thread_init()

Nodes (MPI): Counters independent of MPI, but aggregation tool useful (Score-P, …)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 8 19

http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=303
http://www.openmp.org/mp-documents/openmp-4.5.pdf#page=304
https://icl.cs.utk.edu/projects/papi/wiki/Threads

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Counters on POWER8

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 9 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …
Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect fabric,
memory channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …
Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect fabric,
memory channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …
Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect fabric,
memory channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Compartments
Sources of PMU events

Core-Level

Core / thread level
Core pipeline analysis
— Frontend
— Branch prediction
— Execution units
— …
Behavior investigation
— Stalls
— Utilization
— …

Nest-Level

L3 cache, interconnect fabric,
memory channels
Analysis of
— Main memory access
— Bandwidth

POWER8

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters
Instructions, Stalls

PM_LD_MISS_L1 Loadmissed L1 cache
Store: PM_ST_MISS_L1; Local L4 Hit: PM_DATA_FROM_LL4

PM_INST_CMPL Instructions completed
Also: PM_RUN_INST_CMPL

PM_RUN_CYC Total cycles run
Processor cycles gated by the run latch

PM_CMPLU_STALL Completion stall
Cycles in which a thread did not complete any groups, but there were entries

PM_CMPLU_STALL_THRD Completion stall due to thread conflict
After stall, thread unable to complete because other thread uses completion port

PM_GCT_NOSLOT_CYC Pipeline empty
Global Completion Table has no slots from thread

PM_CMPLU_STALL_BRU_CRU Stall due to IFU
IFU: Instruction Fetching Unit

PM_CMPLU_STALL_BRU Stall due to BRU
BRU: Branch Unit

PM_CMPLU_STALL_VSU Stall due to VSU
VSU: Vector Scalar Unit

PM_CMPLU_STALL_SCALAR_LONG Stall due to long scalar instruction
Floating point divide or square root instructions

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

Number of counters for POWER8:

≈1063

See appendix for more on counters
(CPI stack; resources)

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 12 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Overview

perf Linux’ tool (also called perf_events)
PAPI C/C++ API

Score-P Measurement environment (appendix)
Likwid Set of command line utilities for detailed analysis

perf_event_open() Linux system call from linux/perf_event.h

… Manymore solutions, usually relying on perf

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 13 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Example usage: perf stat ./app

$ perf stat ./poisson2d
Performance counter stats for './poisson2d':

65703.208586 task-clock (msec) # 1.000 CPUs utilized
355 context-switches # 0.005 K/sec

0 cpu-migrations # 0.000 K/sec
10,847 page-faults # 0.165 K/sec

228,425,964,399 cycles # 3.477 GHz (66.67%)
299,409,593 stalled-cycles-frontend # 0.13% frontend cycles idle (50.01%)

147,289,312,280 stalled-cycles-backend # 64.48% backend cycles idle (50.01%)
323,403,983,324 instructions # 1.42 insn per cycle

0.46 stalled cycles per insn (66.68%)
12,665,027,391 branches # 192.761 M/sec (50.00%)

4,256,513 branch-misses # 0.03% of all branches (50.00%)

65.715156815 seconds time elapsed

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 14 19

https://lwn.net/Articles/339361/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Usage: perf stat ./app
Raw counter example: perf stat -e r600f4 ./app

$ perf stat -e r600f4 ./poisson2d

Performance counter stats for './poisson2d':

228,457,525,677 r600f4

65.761947405 seconds time elapsed

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 14 19

https://lwn.net/Articles/339361/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Linux’ own performance tool

Part of Linux kernel since 2009 (v. 2.6.31)
Usage: perf stat ./app
Raw counter example: perf stat -e r600f4 ./app
More in appendix

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 14 19

https://lwn.net/Articles/339361/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran

Goal: Create common (and easy) interface to performance counters
Two API layers (Examples in appendix!)
— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with different counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 15 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers (Examples in appendix!)
— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!

Command line utilities
papi_avail List aliased, common counters

Use papi_avail -e EVENT to get description and options for EVENT
papi_native_avail List all possible counters, with details

Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with different counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 15 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers (Examples in appendix!)
— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)

Comparison to perf: Instrument specific parts of code, with different counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 15 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Measure where it hurts…

Performance Application Programming Interface
API for C/C++, Fortran
Goal: Create common (and easy) interface to performance counters
Two API layers (Examples in appendix!)
— High-Level API: Most-commonly needed information capsuled by convenient functions
— Low-Level API: Access all the counters!
Command line utilities

papi_avail List aliased, common counters
Use papi_avail -e EVENT to get description and options for EVENT

papi_native_avail List all possible counters, with details
Extendable by Component PAPI (GPU!)
Comparison to perf: Instrument specific parts of code, with different counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 15 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

$ papi_avail
Available PAPI preset and user defined events plus hardware information.
--
PAPI Version : 5.5.0.0
Vendor string and code : IBM (3)
Model string and code : 8335-GCA (0)
CPU Revision : 2.000000
CPU Max Megahertz : 3491
CPU Min Megahertz : 2061
Hdw Threads per core : 8
Cores per Socket : 10
Sockets : 2
NUMA Nodes : 1
CPUs per Node : 160
Total CPUs : 160
Running in a VM : no
Number Hardware Counters : 6

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 16 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

Max Multiplex Counters : 192
--

==
PAPI Preset Events

==
Name Code Avail Deriv Description (Note)

PAPI_L1_DCM 0x80000000 Yes Yes Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes No Level 2 data cache misses
PAPI_L2_ICM 0x80000003 No No Level 2 instruction cache misses
PAPI_L3_DCM 0x80000004 No No Level 3 data cache misses
PAPI_L3_ICM 0x80000005 Yes No Level 3 instruction cache misses
PAPI_L1_TCM 0x80000006 No No Level 1 cache misses
PAPI_L2_TCM 0x80000007 No No Level 2 cache misses
PAPI_L3_TCM 0x80000008 No No Level 3 cache misses
PAPI_CA_SNP 0x80000009 No No Requests for a snoop

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 16 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
papi_avail

$ papi_avail -e PM_DATA_FROM_L3MISS
Available PAPI preset and user defined events plus hardware information.
--

Event name: PM_DATA_FROM_L3MISS
Event Code: 0x40000011
Number of Register Values: 0
Description: |Demand LD - L3 Miss (not L2 hit and not L3 hit).|

Unit Masks:
Mask Info: |:u=0|monitor at user level|
Mask Info: |:k=0|monitor at kernel level|
Mask Info: |:h=0|monitor at hypervisor level|
Mask Info: |:period=0|sampling period|
Mask Info: |:freq=0|sampling frequency (Hz)|
Mask Info: |:excl=0|exclusive access|
Mask Info: |:mg=0|monitor guest execution|

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 16 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! (Macros in appendix: C++, C)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 17 19

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
Documentation online and in man pages (man papi_add_event)

All PAPI calls return status code; check for it! (Macros in appendix: C++, C)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 17 19

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! (Macros in appendix: C++, C)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 17 19

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI
Notes on usage; Tipps

Important functions in High Level API
PAPI_num_counters() # available counter registers
PAPI_flops() Get real time, processor time, # floating point operations, and MFLOPs/s
PAPI_ipc() # instructions and IPC (+rtime/ptime)
PAPI_epc() # counts of arbitrary event (+rtime/ptime)

Important functions in Low Level API
PAPI_add_event() Add aliased event to event set
PAPI_add_named_event() Add any event to event set
PAPI_thread_init() Initialize thread support in PAPI
Documentation online and in man pages (man papi_add_event)
All PAPI calls return status code; check for it! (Macros in appendix: C++, C)
Convert names of performance counters with libpfm4 (appendix)

→ http://icl.cs.utk.edu/papi/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 17 19

http://icl.cs.utk.edu/papi/docs/
http://icl.cs.utk.edu/papi/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Counters
A glimpse ahead

Counters built right in
Grouped into domains by topic
NVIDIA differentiates between (more examples in appendix)
Event Countable activity or occurrence on GPU device

Examples: shared_store, generic_load, shared_atom
Metric Characteristic calculated from one or more events

Examples: executed_ipc, flop_count_dp_fma, achieved_occupancy
Usually: access via nvprof / Visual Profiler; but exposed via CUPTI for 3rd party

→ Afternoon session / appendix

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 18 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions
What we’ve learned

Large set of performance counters on POWER8 processors
Right next to (inside) core(s)
Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools
— perf
— PAPI
— Score-P

Also on GPU

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 19 19

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions
What we’ve learned

Large set of performance counters on POWER8 processors
Right next to (inside) core(s)
Provide detailed insight for performance analysis on many levels
Different measurement strategies and tools
— perf
— PAPI
— Score-P

Also on GPU

bit.ly/sc17-
eval

Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 19 19

http://bit.ly/sc17-eval
mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Knuth on Optimization
POWER8 Performance Counters
perf
PAPI Supplementary
Score-P
GPU Counters
Glossary
References

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 1 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Knuth on Optimization

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 2 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Knuth on Optimization
The full quote, finally

There is no doubt that the grail of efficiency leads to abuse. Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of noncrit-
ical parts of their programs, and these attempts at efficiency actually have a strong
negative impactwhendebuggingandmaintenanceare considered. We should forget
about small efficiencies, say about 97% of the time: pre mature optimization is the
root of all evil.

Yet we should not pass up our opportunities in that critical 3%. A good program-
merwill not be lulled into complacencyby such reasoning, hewill bewise to look care-
fully at the critical code; but only after that code has been identified

– Donald Knuth in “Structured Programming with Go to Statements” [2]

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 3 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
POWER8 Performance Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 4 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

POWER8 Performance Counters

Further information on counters at IBMwebsite
— JSON overview of OpenPOWER PMU events on Github
— CPI events andmetrics for POWER8
— Events and groups supported on POWER8 architecture
— Derivedmetrics defined for POWER8 architecture
— Table 11-18 and Table D-1 of POWER8 Processor User’s Manual for the Single-Chip Module
— OProfile: ppc64 POWER8 events
List available counters on system
— With PAPI: papi_native_avail
— With showevtinfo from libpfm’s /examples/ directory

./showevtinfo | \
grep -e "Name" -e "Desc" | sed "s/^.\+: //g" | paste -d'\t' - -

See next slide for CPI stack visualization
Most important counters for OpenMP: DMISS_PM_CMPLU_STALL_DMISS_L3MISS,
PM_CMPLU_STALL_DMISS_REMOTE, PM_CMPLU_STALL_DMISS_DISTANT

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 5 34

https://github.com/open-power/power-pmu-events
http://www.ibm.com/support/knowledgecenter/linuxonibm/liaal/iplsdkcpieventspower8.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_power8metrics.htm
http://www.ibm.com/support/knowledgecenter/SSFK5S_2.2.0/com.ibm.cluster.pedev.v2r2.pedev100.doc/bl7ug_derivedmetricspower8.htm
http://oprofile.sourceforge.net/docs/ppc64-power8-events.php
http://perfmon2.sourceforge.net/

Cycles
PM_RUN_CYC

Other
OTHER_CPI

Nothing to Dispatch
PM_GCT_NOSLOT_CYC

Other

Dispatch Held

Dispatch Held: Other
PM_GCT_NOSLOT_DISP_HELD_OTHER

Dispatch Held: Issue Queue
PM_GCT_NOSLOT_DISP_HELD_ISSQ

Dispatch Held: Store Queue
PM_GCT_NOSLOT_DISP_HELD_SRQ

Dispatch Held: Mapper
PM_GCT_NOSLOT_DISP_HELD_MAPBranch Mispredict

and I-Cache Miss
PM_GCT_NOSLOT_BR_MPRED_ICMISS

Branch Mispredict
PM_GCT_NOSLOT_BR_MPRED

I-Cache Miss
PM_GCT_NOSLOT_IC_MISS

Other

L3 Miss
PM_GCT_NOSLOT_IC_L3MISS

Run Instruction
PM_RUN_INST_CMPL

Stalled Cycles
PM_CMPLU_STALL

Other
PM_CMPLU_STALL_OTHER_CMPL

LSU
PM_CMPLU_STALL_LSU

Other

Dcache Miss
PM_CMPLU_STALL_DCACHE_MISS

L3 Miss
PM_CMPLU_STALL_DMISS_L3MISS

Off-Node Memory

Off-Chip Memory
PM_CMPLU_STALL_DMISS_REMOTE

On-Chip Memory
PM_CMPLU_STALL_DMISS_LMEM

On-Chip L2/L3
PM_CMPLU_STALL_DMISS_L21_L31

L2/L3 Hit
PM_CMPLU_STALL_DMISS_L2L3

L2/L3 Hit
w/ No Conflict

L2/L3 Hit
with Conflict

PM_CMPLU_STALL_DMISS_L2L3_CONFLICTStore Forward
PM_CMPLU_STALL_ST_FWD

Load Finish
PM_CMPLU_STALL_LOAD_FINISH

LSU Reject
PM_CMPLU_STALL_REJECT

Other

LMQ Full
PM_CMPLU_STALL_REJ_LMQ_FULL

ERAT Miss
PM_CMPLU_STALL_ERAT_MIS

Load-Hit-Store
PM_CMPLU_STALL_REJECT_LHSStore Finish

PM_CMPLU_STALL_STORE

NOPs
PM_CMPLU_STALL_NO_NTF

Next-to-Complete Flush
PM_CMPLU_STALL_NTCG_FLUSH

VSU
PM_CMPLU_ST ALL_VSU

Other

Scalar
PM_CMPLU_STALL_SCALAR

Scalar (other)

Scalar Long
PM_CMPLU_STALL_SCALAR_LONG

Vector
PM_CMPLU_STALL_VECTOR

Vector (other)

Vector Long
PM_CMPLU_STALL_VECTOR_LONG

Fixed-Point
PM_CMPLU_STALL_FXU

Fixed-Point (Other)

Fixed-Point Long
PM_CMPLU_STALL_FXLONG

BR or CR
PM_CMPLU_STALL_BRU_CRU

CR

Branch
PM_CMPLU_STALL_BRU

GroupWaiting
to Complete

PM_NTCG_ALL_FIN

Thread Blocked
PM_CMPLU_STALL_THRD

Other

COQ Full
PM_CMPLU_STALL_COQ_FULL

Other Thread’s Flush
PM_CMPLU_STALL_FLUSH

ECC Delay
PM_CMPLU_STALL_MEM_ECC_DELAY

HWSYNC
PM_CMPLU_STALL_HWSYNC

LWSYNC
PM_CMPLU_STALL_LWSYNC

Glossary
BRU Branching Unit

CR Conditional Register

FXU Fixed-Point Unit

VSU Vector-Scalar Unit

LSU Load-Store Unit

LMQ Load Miss Queue

ERAT Effective to Real Address
Translation

LWSYNC Lightweight Synchro-
nize

HWSYNC Heavyweight Synchro-
nize

ECC Error Correcting Code

Derived Quantity

Stall due to…

Thread blocked due to…

Nothing to dispatch due to…

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
perf

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 7 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Sub-commands

Sub-commands for perf
perf list List available counters
perf stat Run program; report performance data

perf record Run program; sample and save performance data
perf report Analyzed saved performance data (appendix)

perf top Like top, live-view of counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 8 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

perf
Tipps, Tricks

Option --repeat for statistical measurements
1.239 seconds time elapsed (+- 0.16%)

Restrict counters to certain user-level modes by -e counter:m, with m = u (user), = k
(kernel), = h (hypervisor)
perfmodes: Per-thread (default), per-process (-p PID), per-CPU (-a)
Other options

-d More details
-d -d More more details

-B Add thousands’ delimiters
-x Print machine-readable output

More info
— web.eece.maine.edu/~vweaver/projects/perf_events/
— Brendan Gregg’s examples on perf usage

→ https://perf.wiki.kernel.org/

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 9 34

web.eece.maine.edu/~vweaver/projects/perf_events/
http://www.brendangregg.com/perf.html
https://perf.wiki.kernel.org/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf record

Usage: perf record ./app

$ perf record ./poisson2d
[perf record: Woken up 41 times to write data]
[nf_conntrack_ipv4] with build id ada66fe00acc82eac85be0969a935e3167b09c88 not found, continuing without symbols
[nf_conntrack] with build id 2911e97a3bde3302788e8388d1e3c19408ad86cf not found, continuing without symbols
[ebtables] with build id b0aa834b86d596edeb5a72d1ebf3936a98b17bcf not found, continuing without symbols
[ip_tables] with build id 23fe04e7292b66a2cc104e8c5b026b4b3a911cac not found, continuing without symbols
[bridge] with build id b7a0fcdbca63084c22e04fcf32e0584d04193954 not found, continuing without symbols
[perf record: Captured and wrote 10.076 MB perf.data (263882 samples)]

$ ll perf.data
-rw------- 1 aherten zam 10570296 Aug 26 19:24 perf.data

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report: Overview

Samples: 263K of event 'cycles:ppp', Event count (approx.): 228605603717, Thread: poisson2d
Overhead Command Shared Object Symbol ◆
93.00% poisson2d poisson2d [.] main ▒
4.70% poisson2d libm-2.17.so [.] __fmaxf ▒
1.84% poisson2d poisson2d [.] 00000017.plt_call.fmax@@GLIBC_2.17 ▒
0.21% poisson2d libm-2.17.so [.] __exp_finite ▒
0.01% poisson2d [kernel.kallsyms] [k] hrtimer_interrupt ▒
0.01% poisson2d [kernel.kallsyms] [k] update_wall_time ▒
0.01% poisson2d libm-2.17.so [.] __GI___exp ▒
0.01% poisson2d [kernel.kallsyms] [k] task_tick_fair ▒
0.01% poisson2d [kernel.kallsyms] [k] rcu_check_callbacks ▒
0.01% poisson2d [kernel.kallsyms] [k] __hrtimer_run_queues ▒
0.01% poisson2d [kernel.kallsyms] [k] __do_softirq ▒
0.01% poisson2d [kernel.kallsyms] [k] _raw_spin_lock ▒
0.01% poisson2d [kernel.kallsyms] [k] timer_interrupt ▒
0.01% poisson2d [kernel.kallsyms] [k] update_process_times ▒
0.01% poisson2d [kernel.kallsyms] [k] tick_sched_timer ▒
0.01% poisson2d [kernel.kallsyms] [k] rcu_process_callbacks ▒
0.01% poisson2d poisson2d [.] 00000017.plt_call.exp@@GLIBC_2.17 ▒
0.01% poisson2d [kernel.kallsyms] [k] ktime_get_update_offsets_now ▒
0.01% poisson2d [kernel.kallsyms] [k] account_process_tick ▒
0.01% poisson2d [kernel.kallsyms] [k] run_posix_cpu_timers ▒
0.00% poisson2d [kernel.kallsyms] [k] trigger_load_balance ▒
0.00% poisson2d [kernel.kallsyms] [k] scheduler_tick ▒
0.00% poisson2d [kernel.kallsyms] [k] clear_user_page ▒
0.00% poisson2d [kernel.kallsyms] [k] update_cfs_shares ▒
0.00% poisson2d [kernel.kallsyms] [k] tick_do_update_jiffies64

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Deeper Analysis with perf
perf report: Zoom to main()

main /gpfs/homeb/zam/aherten/NVAL/OtherProgramming/OpenPOWER-SC17/PAPI-Test/poisson2d
0.00 │ lwz r9,100(r31) ▒

│ mullw r9,r10,r9 ▒
1.01 │ extsw r9,r9 ▒

│ lwz r10,140(r31) ▒
0.00 │ add r9,r10,r9 ▒

│ extsw r9,r9 ▒
0.00 │ rldicr r9,r9,3,60 ▒
0.00 │ ld r10,184(r31) ▒
14.28 │ add r9,r10,r9 ▒
0.00 │ lfd f12,0(r9) ▒
0.00 │ lwz r10,136(r31) ▒
0.00 │ lwz r9,100(r31) ▒
0.00 │ mullw r9,r10,r9 ▒

│ extsw r9,r9 ▒
1.32 │ lwz r10,140(r31) ▒
0.00 │ add r9,r10,r9 ▒
0.00 │ extsw r9,r9 ◆

│ rldicr r9,r9,3,60 ▒
0.00 │ ld r10,168(r31) ▒

│ add r9,r10,r9 ▒
22.54 │ lfd f0,0(r9) ▒
0.01 │ fsub f0,f12,f0 ▒
0.00 │ fabs f0,f0 ▒
0.00 │ fmr f2,f0 ▒

│ lfd f1,128(r31) ▒
│ bl 10000780 <00000017.plt_call.fmax@@GLIBC_2.17> ▒

1.03 │ ld r2,24(r1) ▒
Press 'h' for help on key bindings

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 10 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
PAPI Supplementary

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 11 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: High Level API
Usage: Source Code

// Setup
float realTime, procTime, mflops, ipc;
long long flpins, ins;

// Initial call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

// Compute
mult(m, n, p, A, B, C);

// Finalize call
PAPI_flops(&realTime, &procTime, &flpins, &mflops);
PAPI_ipc(&realTime, &procTime, &ins, &ipc);

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 12 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: Low Level API
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);
// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");
// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection
PAPI_start(EventSet);
// Compute
do_something();
// PAPI: End collection
PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 13 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI: Low Level API
Usage: Source Code

int EventSet = PAPI_NULL;
long long values[2];

// PAPI: Setup
PAPI_library_init(PAPI_VER_CURRENT);
PAPI_create_eventset(&EventSet);
// PAPI: Test availability of counters
PAPI_query_named_event("PM_CMPLU_STALL_VSU");
PAPI_query_named_event("PM_CMPLU_STALL_SCALAR");
// PAPI: Add counters
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_VSU");
PAPI_add_named_event(EventSet, "PM_CMPLU_STALL_SCALAR");
// PAPI: Start collection
PAPI_start(EventSet);
// Compute
do_something();
// PAPI: End collection
PAPI_CALL(PAPI_stop(EventSet, values) , PAPI_OK) ;

Pre-processor macro
for checking results!

See next slides!

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 13 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI Error Macro: C++
For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success) \
{ \

int err = call; \
if (success != err) \
std::cerr << "PAPI error for " << #call << " in L" << __LINE__ << " of " <<
__FILE__ << ": " << PAPI_strerror(err) << std::endl; \↪→

}
// Second argument is code for GOOD,
// e.g. PAPI_OK or PAPI_VER_CURRENT or …
// …
// Call like:
PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 14 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

PAPI Error Macro: C
For easier status code checking

#include "papi.h"
#define PAPI_CALL(call, success) \
{ \

int err = call; \
if (success != err) \
fprintf(stderr, "PAPI error for %s in L%d of %s: %s\n", #call, __LINE__,
__FILE__, PAPI_strerror(err)); \↪→

}
// Second argument is code for GOOD,
// e.g. PAPI_OK or PAPI_VER_CURRENT or …
// …
// Call like:
PAPI_CALL(PAPI_start(EventSet), PAPI_OK);

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 15 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

libpfm4
A helper Library

Helper library for setting up counters interfacing with perf kernel environment
Used by PAPI to resolve counters
Handy as translation: Named counters→ raw counters
Use command line utility perf_examples/evt2raw to get raw counter for perf

$./evt2raw PM_CMPLU_STALL_VSU
r2d012

→ http://perfmon2.sourceforge.net/docs_v4.html

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 16 34

http://perfmon2.sourceforge.net/docs_v4.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Score-P

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 17 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Introduction

Measurement infrastructure for profiling, event tracing, online analysis
Output format input for many analysis tools (Cube, Vampir, Periscope, Scalasca, Tau)

CHAPTER 1. INTRODUCTION

1.4 Score-P Software Architecture Overview

In order to allow the user to perform such an optimization of his code (typically written in Fortran, C, or C++
and implemented in a serial way or using a parallelization via an multi-process, thread-parallel, accelerator-based
paradigm, or a combination thereof), the Score-P system provides a number of components that interact with each
other and with external tools. A graphical overview of this structure is given in Fig. 1.2. We shall now briefly
introduce the elements of this structure; more details will be given in the later chapters of this document.

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling
interrupts

(PAPI, PERF)

Call-path profiles
(CUBE4, TAU)

Online
interface

Process-level
parallelism

(MPI, SHMEM)

Thread-level
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter
(PAPI, rusage, PERF, plugins)

Figure 1.2: Overview of the Score-P measurement system architecture and the tools interface.

In order to instrument an application, the user needs to recompile the application using the Score-P instrumentation
command, which is added as a prefix to the original compile and link command lines. It automatically detects the
programming paradigm by parsing the original build instructions and utilizes appropriate and configurable methods
of instrumentation. These are currently:

• compiler instrumentation,

• MPI and SHMEM library interposition,

• source code instrumentation via the TAU instrumenter,

• OpenMP source code instrumentation using Opari2.

• Pthread instrumentation via GNU ld library wrapping.

• CUDA instrumentation

While the first three of these methods are based on using tools provided externally, the Opari2 instrumenter for
OpenMP programs is a part of the Score-P infrastructure itself. It is an extension of the well known and frequently
used OpenMP Pragma And Region Instrumenter system (Opari) that has been successfully used in the
past in combination with tools like Scalasca, VampirTrace and ompP. The fundamental concept of such a system is a
source-to-source translation that automatically adds all necessary calls to a runtime measurement library allowing to

4

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 18 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Howto

Prefix compiler executable by scorep

$ scorep clang++ -o app code.cpp

→ Adds instrumentation calls to binary
Profiling output is stored to file after run of binary
Steer with environment variables at run time

$ export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PM_CMPLU_STALL_VSU
$./app

⇒ Use different PAPI counters per run!

Quick visualization with Cube; scoring with scorep-score
Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 19 34

http://www.scalasca.org/software/cube-4.x/cube.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Principle analysis with scorep-score

Usage: scorep-score -r FILE

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 20 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Performance counter analysis with cube_dump

Usage: cube-dump -m METRIC FILE

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 20 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Score-P
Analysis with Cube

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 21 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
GPU Counters

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 22 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Example Events & Metrics

NAME NVIDIA Description (quoted)
gld_inst_8bit Total number of 8-bit global load instructions that are executed by all the threads across

all thread blocks.
threads_launched Number of threads launched on amultiprocessor.

inst_executed Number of instructions executed, do not include replays.
shared_store Number of executed store instructions where state space is specified as shared,

increments per warp on amultiprocessor.

executed_ipc Instructions executed per cycle
achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps

supported on amultiprocessor
l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores
gld_efficiency Ratio of requested global memory load throughput to required global memory load

throughput.
flop_count_dp Number of double-precision floating-point operations executed non-predicated threads

(add, multiply, multiply-accumulate and special)
stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed

because the compute pipeline is busy
Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 23 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Measuring GPU counters
Tools

CUPTI C/C++-API through cupti.h
Activity API: Trace CPU/GPU activity
Callback API: Hooks for own functions
Event / Metric API: Read counters andmetrics

→ Targets developers of profiling tools
PAPI All PAPI instrumentation through PAPI-C, e.g.

cuda:::device:0:threads_launched
Score-P Mature CUDA support

Prefix nvcc compilation with scorep
Set environment variable SCOREP_CUDA_ENABLE=yes
Run, analyze

nvprof, Visual Profiler NVIDIA’s solutions

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 24 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof
GPU command-line measurements

Usage: nvprof --events AB --metrics C,D ./app

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 25 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

nvprof
Useful hints

Useful parameters to nvprof
--query-metrics List all metrics
--query-events List all events
--kernels name Limit scope to kernel

--print-gpu-trace Print timeline of invocations
--aggregate-mode off No aggregation over all multiprocessors (average)

--csv Output a CSV
--export-profile Store profiling information, e.g. for Visual Profiler

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 26 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
An annotated time line view

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 27 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Visual Profiler
Analysis experiments

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 27 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Glossary & References

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 28 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

CPI Cycles per Instructions; a metric to determine efficiency of an architecture
or program. 9, 10

IPC Instructions per Cycle; a metric to determine efficiency of an architecture
or program. 9, 10

MPI The Message Passing Interface, a API definition for multi-node computing.
14

NVIDIA US technology company creating GPUs. 46, 75, 76

OpenMP Directive-based programming, primarily for multi-threadedmachines. 14

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 29 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

PAPI The Performance API, a C/C++ API for querying performance counters. 2,
31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48

perf Part of the Linux kernel which facilitates access to performance counters;
comes with command line utilities. 2, 31, 32, 33, 34, 35, 36, 37, 38, 47, 48

POWER8 CPU architecture from IBM, available also under the OpenPOWER
Foundation. 2, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 47,
48, 49, 52, 53

Score-P Collection of tools for instrumenting and subsequently scoring
applications to gain insight into the program’s performance. 31, 47, 48

CPU Central Processing Unit. 9, 10, 12, 13, 14, 82

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 30 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

GPU Graphics Processing Unit. 14, 35, 36, 37, 38, 46, 47, 48, 82

PMU Performance Measuring Unit. 16, 17, 18, 19

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 31 34

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics I

[3] Score-P Authors. Score-P User Manual. URL:
http://www.vi-hps.org/projects/score-p/.

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 32 34

http://www.vi-hps.org/projects/score-p/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Literature I

[1] Terje Mathisen. Pentium Secrets. URL:
http://www.gamedev.net/page/resources/_/technical/general-
programming/pentium-secrets-r213 (pages 12, 13).

[2] Donald E. Knuth. “Structured Programmingwith Go to Statements”. In: ACMComput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640.
URL: http://doi.acm.org/10.1145/356635.356640 (page 51).

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 33 34

http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
http://www.gamedev.net/page/resources/_/technical/general-programming/pentium-secrets-r213
https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The End
Thanks for reading until here!

Andreas Herten | OpenPOWER Performance Counters | 13 November 2017 # 34 34

	Motivation
	Performance Counters
	Introduction
	General Description

	Counters on POWER8
	Measuring Counters
	perf
	PAPI
	GPUs

	Conclusion
	Appendix
	Appendix
	Knuth on Optimization
	POWER8 Performance Counters
	perf
	PAPI Supplementary
	Score-P
	GPU Counters
	Glossary
	References

